These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 28880084)
1. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L. Huang H; Burghardt M; Schuster AC; Leide J; Lara I; Riederer M J Agric Food Chem; 2017 Oct; 65(40):8790-8797. PubMed ID: 28880084 [TBL] [Abstract][Full Text] [Related]
2. Chemical composition and water permeability of the cuticular wax barrier in rose leaf and petal: A comparative investigation. Cheng G; Huang H; Zhou L; He S; Zhang Y; Cheng X Plant Physiol Biochem; 2019 Feb; 135():404-410. PubMed ID: 30635221 [TBL] [Abstract][Full Text] [Related]
3. Compositional, structural and functional cuticle analysis of Prunus laurocerasus L. sheds light on cuticular barrier plasticity. Diarte C; Xavier de Souza A; Staiger S; Deininger AC; Bueno A; Burghardt M; Graell J; Riederer M; Lara I; Leide J Plant Physiol Biochem; 2021 Jan; 158():434-445. PubMed ID: 33257229 [TBL] [Abstract][Full Text] [Related]
4. Chemical composition of the cuticular membrane in guava fruit (Psidium guajava L.) affects barrier property to transpiration. Huang H; Lian Q; Wang L; Shan Y; Li F; Chang SK; Jiang Y Plant Physiol Biochem; 2020 Oct; 155():589-595. PubMed ID: 32846394 [TBL] [Abstract][Full Text] [Related]
5. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Zeisler V; Schreiber L Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347 [TBL] [Abstract][Full Text] [Related]
6. The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: effects of a deficiency in a beta-ketoacyl-coenzyme A synthase (LeCER6). Leide J; Hildebrandt U; Reussing K; Riederer M; Vogg G Plant Physiol; 2007 Jul; 144(3):1667-79. PubMed ID: 17468214 [TBL] [Abstract][Full Text] [Related]
7. Chemical Composition of Cuticle and Barrier Properties to Transpiration in the Fruit of Huang H; Wang L; Qiu D; Lu Y Front Plant Sci; 2022; 13():840061. PubMed ID: 35651771 [TBL] [Abstract][Full Text] [Related]
8. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid beta-ketoacyl-CoA synthase. Vogg G; Fischer S; Leide J; Emmanuel E; Jetter R; Levy AA; Riederer M J Exp Bot; 2004 Jun; 55(401):1401-10. PubMed ID: 15133057 [TBL] [Abstract][Full Text] [Related]
9. Water permeability of different aerial tissues of carnations is related to cuticular wax composition. Cheng G; Ye C; Zhang J; Li H; Jiang Y; Duan X Physiol Plant; 2023 Mar; 175(2):e13883. PubMed ID: 36840510 [TBL] [Abstract][Full Text] [Related]
10. Time course of pentacyclic triterpenoids from fruits and leaves of olive tree (Olea europaea L.) cv. Picual and cv. Cornezuelo during ripening. Peragón J J Agric Food Chem; 2013 Jul; 61(27):6671-8. PubMed ID: 23768136 [TBL] [Abstract][Full Text] [Related]
11. The positional sterile (ps) mutation affects cuticular transpiration and wax biosynthesis of tomato fruits. Leide J; Hildebrandt U; Vogg G; Riederer M J Plant Physiol; 2011 Jun; 168(9):871-7. PubMed ID: 21242016 [TBL] [Abstract][Full Text] [Related]
12. Insights Into Olive Fruit Surface Functions: A Comparison of Cuticular Composition, Water Permeability, and Surface Topography in Nine Cultivars During Maturation. Diarte C; Lai PH; Huang H; Romero A; Casero T; Gatius F; Graell J; Medina V; East A; Riederer M; Lara I Front Plant Sci; 2019; 10():1484. PubMed ID: 31798618 [TBL] [Abstract][Full Text] [Related]
13. Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies. Gonçalves A; Silva E; Brito C; Martins S; Pinto L; Dinis LT; Luzio A; Martins-Gomes C; Fernandes-Silva A; Ribeiro C; Rodrigues MÂ; Moutinho-Pereira J; Nunes FM; Correia CM J Sci Food Agric; 2020 Jan; 100(2):682-694. PubMed ID: 31583702 [TBL] [Abstract][Full Text] [Related]
14. Protecting against water loss: analysis of the barrier properties of plant cuticles. Riederer M; Schreiber L J Exp Bot; 2001 Oct; 52(363):2023-32. PubMed ID: 11559738 [TBL] [Abstract][Full Text] [Related]
15. Multifunctional Contribution of the Inflated Fruiting Calyx: Implication for Cuticular Barrier Profiles of the Solanaceous Genera de Souza AX; Riederer M; Leide J Front Plant Sci; 2022; 13():888930. PubMed ID: 35874003 [TBL] [Abstract][Full Text] [Related]
16. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. Zeisler-Diehl V; Müller Y; Schreiber L J Plant Physiol; 2018 Aug; 227():66-74. PubMed ID: 29653782 [TBL] [Abstract][Full Text] [Related]
17. Movement and regeneration of epicuticular waxes through plant cuticles. Neinhuis C; Koch K; Barthlott W Planta; 2001 Jul; 213(3):427-34. PubMed ID: 11506366 [TBL] [Abstract][Full Text] [Related]
18. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. Santrůcek J; Simánová E; Karbulková J; Simková M; Schreiber L J Exp Bot; 2004 Jun; 55(401):1411-22. PubMed ID: 15155780 [TBL] [Abstract][Full Text] [Related]
19. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures. Schuster AC; Burghardt M; Alfarhan A; Bueno A; Hedrich R; Leide J; Thomas J; Riederer M AoB Plants; 2016; 8():. PubMed ID: 27154622 [TBL] [Abstract][Full Text] [Related]
20. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum). Parsons EP; Popopvsky S; Lohrey GT; Alkalai-Tuvia S; Perzelan Y; Bosland P; Bebeli PJ; Paran I; Fallik E; Jenks MA Physiol Plant; 2013 Oct; 149(2):160-74. PubMed ID: 23496056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]