These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 28880216)
1. Inhibition of NAT10 Suppresses Melanogenesis and Melanoma Growth by Attenuating Microphthalmia-Associated Transcription Factor (MITF) Expression. Oh TI; Lee YM; Lim BO; Lim JH Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28880216 [No Abstract] [Full Text] [Related]
2. G protein-coupled estrogen receptor enhances melanogenesis via cAMP-protein kinase (PKA) by upregulating microphthalmia-related transcription factor-tyrosinase in melanoma. Sun M; Xie HF; Tang Y; Lin SQ; Li JM; Sun SN; Hu XL; Huang YX; Shi W; Jian D J Steroid Biochem Mol Biol; 2017 Jan; 165(Pt B):236-246. PubMed ID: 27378491 [TBL] [Abstract][Full Text] [Related]
3. UCHL1 Regulates Melanogenesis through Controlling MITF Stability in Human Melanocytes. Seo EY; Jin SP; Sohn KC; Park CH; Lee DH; Chung JH J Invest Dermatol; 2017 Aug; 137(8):1757-1765. PubMed ID: 28392346 [TBL] [Abstract][Full Text] [Related]
4. NDRG2 gene expression in B16F10 melanoma cells restrains melanogenesis via inhibition of Mitf expression. Kim A; Yang Y; Lee MS; Yoo YD; Lee HG; Lim JS Pigment Cell Melanoma Res; 2008 Dec; 21(6):653-64. PubMed ID: 19067970 [TBL] [Abstract][Full Text] [Related]
5. Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating up-regulation of tyrosinase and MITF in mouse B16 melanoma cells. Jian D; Jiang D; Su J; Chen W; Hu X; Kuang Y; Xie H; Li J; Chen X Steroids; 2011 Nov; 76(12):1297-304. PubMed ID: 21745488 [TBL] [Abstract][Full Text] [Related]
6. CRTC3, a sensor and key regulator for melanogenesis, as a tunable therapeutic target for pigmentary disorders. Yoo H; Lee HR; Kim KH; Kim MA; Bang S; Kang YH; Kim WH; Song Y; Chang SE Theranostics; 2021; 11(20):9918-9936. PubMed ID: 34815795 [No Abstract] [Full Text] [Related]
7. miR-380-3p regulates melanogenesis by targeting SOX6 in melanocytes from alpacas (Vicugna pacos). Liu X; Du B; Zhang P; Zhang J; Zhu Z; Liu B; Fan R BMC Genomics; 2019 Dec; 20(1):962. PubMed ID: 31823726 [TBL] [Abstract][Full Text] [Related]
8. 8-Methoxybutin inhibits α-MSH induced melanogenesis and proliferation of skin melanoma by suppression of the transactivation activity of microphthalmia-associated transcription factor. Oh E; Kim HJ; Lee D; Kang JH; Kim HG; Han SH; Baek NI; Kim KT Biomed Pharmacother; 2022 Aug; 152():113272. PubMed ID: 35716437 [TBL] [Abstract][Full Text] [Related]
9. FGF21 regulates melanogenesis in alpaca melanocytes via ERK1/2-mediated MITF downregulation. Wang R; Chen T; Zhao B; Fan R; Ji K; Yu X; Wang X; Dong C Biochem Biophys Res Commun; 2017 Aug; 490(2):466-471. PubMed ID: 28623131 [TBL] [Abstract][Full Text] [Related]
10. SMILE Downregulation during Melanogenesis Induces MITF Transcription in B16F10 Cells. Truong XT; Lee YS; Nguyen TTP; Kim HJ; Kim SH; Moon C; Kim DK; Choi HS; Jeon TI Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499416 [TBL] [Abstract][Full Text] [Related]
11. p21-activated kinase 4 critically regulates melanogenesis via activation of the CREB/MITF and β-catenin/MITF pathways. Yun CY; You ST; Kim JH; Chung JH; Han SB; Shin EY; Kim EG J Invest Dermatol; 2015 May; 135(5):1385-1394. PubMed ID: 25560280 [TBL] [Abstract][Full Text] [Related]
12. Neural stem cells inhibit melanin production by activation of Wnt inhibitors. Hwang I; Park JH; Park HS; Choi KA; Seol KC; Oh SI; Kang S; Hong S J Dermatol Sci; 2013 Dec; 72(3):274-83. PubMed ID: 24016750 [TBL] [Abstract][Full Text] [Related]
13. Hesperidin, A Popular Antioxidant Inhibits Melanogenesis via Erk1/2 Mediated MITF Degradation. Lee HJ; Lee WJ; Chang SE; Lee GY Int J Mol Sci; 2015 Aug; 16(8):18384-95. PubMed ID: 26262610 [TBL] [Abstract][Full Text] [Related]
14. Upregulation of Villareal MO; Kume S; Neffati M; Isoda H Biomed Res Int; 2017; 2017():8303671. PubMed ID: 29359158 [TBL] [Abstract][Full Text] [Related]
15. A chemical compound from fruit extract of Juglans mandshurica inhibits melanogenesis through p-ERK-associated MITF degradation. Kim JY; Lee EJ; Ahn Y; Park S; Kim SH; Oh SH Phytomedicine; 2019 Apr; 57():57-64. PubMed ID: 30668323 [TBL] [Abstract][Full Text] [Related]
16. Role of microRNA508-3p in melanogenesis by targeting microphthalmia transcription factor in melanocytes of alpaca. Zhang J; Liu Y; Zhu Z; Yang S; Ji K; Hu S; Liu X; Yao J; Fan R; Dong C Animal; 2017 Feb; 11(2):236-243. PubMed ID: 27405515 [TBL] [Abstract][Full Text] [Related]
17. Lactoferrin inhibits melanogenesis by down-regulating MITF in melanoma cells and normal melanocytes. Ishii N; Ryu M; Suzuki YA Biochem Cell Biol; 2017 Feb; 95(1):119-125. PubMed ID: 28165285 [TBL] [Abstract][Full Text] [Related]
18. Establishment of a melanogenesis regulation assay system using a fluorescent protein reporter combined with the promoters for the melanogenesis-related genes in human melanoma cells. Lin CC; Yang CH; Lin YJ; Chiu YW; Chen CY Enzyme Microb Technol; 2015 Jan; 68():1-9. PubMed ID: 25435499 [TBL] [Abstract][Full Text] [Related]
19. Vasoactive intestinal peptide stimulates melanogenesis in B16F10 mouse melanoma cells via CREB/MITF/tyrosinase signaling. Yuan XH; Yao C; Oh JH; Park CH; Tian YD; Han M; Kim JE; Chung JH; Jin ZH; Lee DH Biochem Biophys Res Commun; 2016 Aug; 477(3):336-42. PubMed ID: 27343558 [TBL] [Abstract][Full Text] [Related]
20. Beclin 1 controls pigmentation by changing the nuclear localization of melanogenic factor MITF. Rai A; Chatterjee B; Bhowmick S; Sagar S; Roy SS Biochem Biophys Res Commun; 2020 Aug; 528(4):719-725. PubMed ID: 32513537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]