BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 28880251)

  • 1. Studying Electrotaxis in Microfluidic Devices.
    Sun YS
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28880251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic devices for studying chemotaxis and electrotaxis.
    Li J; Lin F
    Trends Cell Biol; 2011 Aug; 21(8):489-97. PubMed ID: 21665472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrotaxis-on-Chip to Quantify Neutrophil Migration Towards Electrochemical Gradients.
    Moarefian M; Davalos RV; Burton MD; Jones CN
    Front Immunol; 2021; 12():674727. PubMed ID: 34421891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ElectroTaxis-on-a-Chip (ETC): an integrated quantitative high-throughput screening platform for electrical field-directed cell migration.
    Zhao S; Zhu K; Zhang Y; Zhu Z; Xu Z; Zhao M; Pan T
    Lab Chip; 2014 Nov; 14(22):4398-405. PubMed ID: 25242672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell migration microfluidics for electrotaxis-based heterogeneity study of lung cancer cells.
    Li Y; Xu T; Zou H; Chen X; Sun D; Yang M
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):837-845. PubMed ID: 27816579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrotaxis Studies of Lung Cancer Cells using a Multichannel Dual-electric-field Microfluidic Chip.
    Hou HS; Chang HF; Cheng JY
    J Vis Exp; 2015 Dec; (106):e53340. PubMed ID: 26780080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic device for studying cell migration in single or co-existing chemical gradients and electric fields.
    Li J; Zhu L; Zhang M; Lin F
    Biomicrofluidics; 2012 Jun; 6(2):24121-2412113. PubMed ID: 22670168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated T lymphocytes migrate toward the cathode of DC electric fields in microfluidic devices.
    Li J; Nandagopal S; Wu D; Romanuik SF; Paul K; Thomson DJ; Lin F
    Lab Chip; 2011 Apr; 11(7):1298-304. PubMed ID: 21327249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.
    Chou TY; Sun YS; Hou HS; Wu SY; Zhu Y; Cheng JY; Lo KY
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Developments in Electrotaxis Assays.
    Wu J; Lin F
    Adv Wound Care (New Rochelle); 2014 Feb; 3(2):149-155. PubMed ID: 24761355
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of direct current electric fields on lung cancer cell electrotaxis in a PMMA-based microfluidic device.
    Li Y; Xu T; Chen X; Lin S; Cho M; Sun D; Yang M
    Anal Bioanal Chem; 2017 Mar; 409(8):2163-2178. PubMed ID: 28078410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use Microfluidic Chips to Study the Phototaxis of Lung Cancer Cells.
    Lin FY; Lin JY; Lo KY; Sun YS
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrotaxis evokes directional separation of co-cultured keratinocytes and fibroblasts.
    Leal J; Shaner S; Jedrusik N; Savelyeva A; Asplund M
    Sci Rep; 2023 Jul; 13(1):11444. PubMed ID: 37454232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrotaxis and wound healing: experimental methods to study electric fields as a directional signal for cell migration.
    Tai G; Reid B; Cao L; Zhao M
    Methods Mol Biol; 2009; 571():77-97. PubMed ID: 19763960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of electrotaxis on cell behaviour.
    Cortese B; Palamà IE; D'Amone S; Gigli G
    Integr Biol (Camb); 2014 Sep; 6(9):817-30. PubMed ID: 25058796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrotaxis: Cell Directional Movement in Electric Fields.
    Sroka J; Zimolag E; Lasota S; Korohoda W; Madeja Z
    Methods Mol Biol; 2018; 1749():325-340. PubMed ID: 29526007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A receptor-electromigration-based model for cellular electrotactic sensing and migration.
    Wu D; Lin F
    Biochem Biophys Res Commun; 2011 Aug; 411(4):695-701. PubMed ID: 21782800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256.
    Sroka J; Krecioch I; Zimolag E; Lasota S; Rak M; Kedracka-Krok S; Borowicz P; Gajek M; Madeja Z
    PLoS One; 2016; 11(2):e0149133. PubMed ID: 26863616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of EGFR and RTK signaling in the electrotaxis of lung adenocarcinoma cells under direct-current electric field stimulation.
    Tsai HF; Huang CW; Chang HF; Chen JJ; Lee CH; Cheng JY
    PLoS One; 2013; 8(8):e73418. PubMed ID: 23951353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.