These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2888032)

  • 1. Calcium dependent aspects of synaptic plasticity, excitatory amino acid neurotransmission, brain aging and schizophrenia: a unifying hypothesis.
    Etienne P; Baudry M
    Neurobiol Aging; 1987; 8(4):362-6. PubMed ID: 2888032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of excitatory amino acid neurotransmission in synaptic plasticity and pathology. An integrative hypothesis concerning the pathogenesis and evolutionary advantages of schizophrenia-related genes.
    Etienne P; Baudry M
    J Neural Transm Suppl; 1990; 29():39-48. PubMed ID: 1972735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hippocampal synaptic plasticity induced by excitatory amino acids includes changes in sensitivity to the calcium channel blocker, omega-conotoxin.
    Krishtal OA; Petrov AV; Smirnov SV; Nowycky MC
    Neurosci Lett; 1989 Jul; 102(2-3):197-204. PubMed ID: 2554206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium signaling dysfunction in schizophrenia: a unifying approach.
    Lidow MS
    Brain Res Brain Res Rev; 2003 Sep; 43(1):70-84. PubMed ID: 14499463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotransmission and the ontogeny of human brain.
    Retz W; Kornhuber J; Riederer P
    J Neural Transm (Vienna); 1996; 103(4):403-19. PubMed ID: 9617785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury.
    Curcio M; Salazar IL; Mele M; Canzoniero LM; Duarte CB
    Prog Neurobiol; 2016 Aug; 143():1-35. PubMed ID: 27283248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of Coordinated Presynaptic and Postsynaptic Maturation Underlies the Defects in Hippocampal Synapse Stability and Plasticity in Abl2/Arg-Deficient Mice.
    Xiao X; Levy AD; Rosenberg BJ; Higley MJ; Koleske AJ
    J Neurosci; 2016 Jun; 36(25):6778-91. PubMed ID: 27335408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of calpain-2 in neurons: implications for synaptic plasticity.
    Zadran S; Bi X; Baudry M
    Mol Neurobiol; 2010 Oct; 42(2):143-50. PubMed ID: 20924799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D-Amino acids in brain neurotransmission and synaptic plasticity.
    Billard JM
    Amino Acids; 2012 Nov; 43(5):1851-60. PubMed ID: 22886346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-Amino acids in the brain and mutant rodents lacking D-amino-acid oxidase activity.
    Yamanaka M; Miyoshi Y; Ohide H; Hamase K; Konno R
    Amino Acids; 2012 Nov; 43(5):1811-21. PubMed ID: 22892863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The aging brain: protein phosphorylation as a target of changes in neuronal function.
    Magnoni MS; Govoni S; Battaini F; Trabucchi M
    Life Sci; 1991; 48(5):373-85. PubMed ID: 1671520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxytocin suppresses basal glutamatergic transmission but facilitates activity-dependent synaptic potentiation in the medial prefrontal cortex.
    Ninan I
    J Neurochem; 2011 Oct; 119(2):324-31. PubMed ID: 21848811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular and molecular correlates of aging in the nervous system.
    Smith DO
    Exp Gerontol; 1988; 23(4-5):399-412. PubMed ID: 2904374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitatory amino acid analogs evoke release of endogenous amino acids and acetyl choline from chick retina in vitro.
    Campochiaro P; Ferkany JW; Coyle JT
    Vision Res; 1985; 25(10):1375-86. PubMed ID: 2868567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptotagmin IV does not alter excitatory fast synaptic transmission or fusion pore kinetics in mammalian CNS neurons.
    Ting JT; Kelley BG; Sullivan JM
    J Neurosci; 2006 Jan; 26(2):372-80. PubMed ID: 16407532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Links between long-term potentiation and neuropathology. An hypothesis involving calcium-activated proteases.
    Lynch G; Seubert P
    Ann N Y Acad Sci; 1989; 568():171-80. PubMed ID: 2560897
    [No Abstract]   [Full Text] [Related]  

  • 17. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.
    Cooper RL; Winslow JL; Govind CK; Atwood HL
    J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteolysis of glutamate receptor-interacting protein by calpain in rat brain: implications for synaptic plasticity.
    Lu X; Wyszynski M; Sheng M; Baudry M
    J Neurochem; 2001 Jun; 77(6):1553-60. PubMed ID: 11413238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid regrowth of hippocampal mossy fibres and preceding maturation of NMDA receptor-mediated neurotransmission.
    Ikegaya Y; Koyama R; Yamada MK; Nishiyama N; Matsuki N
    Eur J Neurosci; 2002 Jun; 15(11):1859-62. PubMed ID: 12081666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner.
    Lugli G; Larson J; Martone ME; Jones Y; Smalheiser NR
    J Neurochem; 2005 Aug; 94(4):896-905. PubMed ID: 16092937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.