These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28881204)

  • 1. Gelation mechanism of cellulose nanofibre gels: A colloids and interfacial perspective.
    Mendoza L; Batchelor W; Tabor RF; Garnier G
    J Colloid Interface Sci; 2018 Jan; 509():39-46. PubMed ID: 28881204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fibre dimension and charge density on nanocellulose gels.
    Mendoza L; Gunawardhana T; Batchelor W; Garnier G
    J Colloid Interface Sci; 2018 Sep; 525():119-125. PubMed ID: 29689416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the transparency and rheology of nanocellulose gels with the extent of carboxylation.
    Mendoza DJ; Hossain L; Browne C; Raghuwanshi VS; Simon GP; Garnier G
    Carbohydr Polym; 2020 Oct; 245():116566. PubMed ID: 32718648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the counter-ion on nanocellulose hydrogels and their superabsorbent structure and properties.
    Barajas-Ledesma RM; Hossain L; Wong VNL; Patti AF; Garnier G
    J Colloid Interface Sci; 2021 Oct; 599():140-148. PubMed ID: 33933789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocellulose-lysozyme colloidal gels via electrostatic complexation.
    Wu T; Kummer N; De France KJ; Campioni S; Zeng Z; Siqueira G; Dong J; Nyström G
    Carbohydr Polym; 2021 Jan; 251():117021. PubMed ID: 33142582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological behavior of nanocellulose gels at various calcium chloride concentrations.
    Qu RJ; Wang Y; Li D; Wang LJ
    Carbohydr Polym; 2021 Nov; 274():118660. PubMed ID: 34702479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocellulose for gel electrophoresis.
    Mendoza L; Gunawardhana T; Batchelor W; Garnier G
    J Colloid Interface Sci; 2019 Mar; 540():148-154. PubMed ID: 30639662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals.
    Azzam F; Siqueira E; Fort S; Hassaini R; Pignon F; Travelet C; Putaux JL; Jean B
    Biomacromolecules; 2016 Jun; 17(6):2112-9. PubMed ID: 27116589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monovalent Salt and pH-Induced Gelation of Oxidised Cellulose Nanofibrils and Starch Networks: Combining Rheology and Small-Angle X-ray Scattering.
    Hossain KMZ; Calabrese V; da Silva MA; Bryant SJ; Schmitt J; Ahn-Jarvis JH; Warren FJ; Khimyak YZ; Scott JL; Edler KJ
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33808830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods.
    Xu Y; Atrens AD; Stokes JR
    J Colloid Interface Sci; 2017 Jun; 496():130-140. PubMed ID: 28214623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gelation of hydroxyethyl cellulose aqueous solution induced by addition of colloidal silica nanoparticles.
    Gong T; Hou Y; Yang X; Guo Y
    Int J Biol Macromol; 2019 Aug; 134():547-556. PubMed ID: 31100393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning rheology and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils aqueous suspensions by addition of different acids.
    Alves L; Ferraz E; Lourenço AF; Ferreira PJ; Rasteiro MG; Gamelas JAF
    Carbohydr Polym; 2020 Jun; 237():116109. PubMed ID: 32241451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheological modification of partially oxidised cellulose nanofibril gels with inorganic clays.
    Bryant SJ; Calabrese V; da Silva MA; Zakir Hossain KM; Scott JL; Edler KJ
    PLoS One; 2021; 16(7):e0252660. PubMed ID: 34234363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Associative structures formed from cellulose nanofibrils and nanochitins are pH-responsive and exhibit tunable rheology.
    Facchine EG; Bai L; Rojas OJ; Khan SA
    J Colloid Interface Sci; 2021 Apr; 588():232-241. PubMed ID: 33401050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloid fibril-nanocellulose interactions and self-assembly.
    Kummer N; Giacomin CE; Fischer P; Campioni S; Nyström G
    J Colloid Interface Sci; 2023 Jul; 641():338-347. PubMed ID: 36934581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose Hydrogel for Blood Typing Tests.
    Curvello R; Mendoza L; McLiesh H; Manolios J; Tabor RF; Garnier G
    ACS Appl Bio Mater; 2019 Jun; 2(6):2355-2364. PubMed ID: 35030728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal stability of aqueous nanofibrillated cellulose dispersions.
    Fall AB; Lindström SB; Sundman O; Ödberg L; Wågberg L
    Langmuir; 2011 Sep; 27(18):11332-8. PubMed ID: 21834530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect.
    Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN
    Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.