These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 28881226)
1. A comparison of the effects of copper nanoparticles and copper sulfate on Phaeodactylum tricornutum physiology and transcription. Zhu Y; Xu J; Lu T; Zhang M; Ke M; Fu Z; Pan X; Qian H Environ Toxicol Pharmacol; 2017 Dec; 56():43-49. PubMed ID: 28881226 [TBL] [Abstract][Full Text] [Related]
2. Comparative contributions of copper nanoparticles and ions to copper bioaccumulation and toxicity in barnacle larvae. Yang L; Wang WX Environ Pollut; 2019 Jun; 249():116-124. PubMed ID: 30884390 [TBL] [Abstract][Full Text] [Related]
3. Growth and physiological responses of a marine diatom (Phaeodactylum tricornutum) against two imidazolium-based ionic liquids ([C Deng XY; Chen B; Li D; Hu XL; Cheng J; Gao K; Wang CH Aquat Toxicol; 2017 Aug; 189():115-122. PubMed ID: 28618302 [TBL] [Abstract][Full Text] [Related]
4. Copper toxicity to Phaeodactylum tricornutum: a survey of the sensitivity of various toxicity endpoints at the physiological, biochemical, molecular and structural levels. Wei Y; Zhu N; Lavoie M; Wang J; Qian H; Fu Z Biometals; 2014 Jun; 27(3):527-37. PubMed ID: 24676505 [TBL] [Abstract][Full Text] [Related]
5. Time-averaged copper concentrations from continuous exposures predicts pulsed exposure toxicity to the marine diatom, Phaeodactylum tricornutum: Importance of uptake and elimination. Angel BM; Simpson SL; Chariton AA; Stauber JL; Jolley DF Aquat Toxicol; 2015 Jul; 164():1-9. PubMed ID: 25911575 [TBL] [Abstract][Full Text] [Related]
6. Inhibitory effects of tributyl phosphate on algal growth, photosynthesis, and fatty acid synthesis in the marine diatom Phaeodactylum tricornutum. Song H; Fan X; Liu G; Xu J; Li X; Tan Y; Qian H Environ Sci Pollut Res Int; 2016 Dec; 23(23):24009-24018. PubMed ID: 27638802 [TBL] [Abstract][Full Text] [Related]
7. TiO2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Wang Y; Zhu X; Lao Y; Lv X; Tao Y; Huang B; Wang J; Zhou J; Cai Z Sci Total Environ; 2016 Sep; 565():818-826. PubMed ID: 27060054 [TBL] [Abstract][Full Text] [Related]
8. The response of Phaeodactylum tricornutum to quantum dot exposure: Acclimation and changes in protein expression. Morelli E; Salvadori E; Basso B; Tognotti D; Cioni P; Gabellieri E Mar Environ Res; 2015 Oct; 111():149-57. PubMed ID: 26183536 [TBL] [Abstract][Full Text] [Related]
9. Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in Phaeodactylum tricornutum. Bai X; Sun C; Xie J; Song H; Zhu Q; Su Y; Qian H; Fu Z Environ Sci Pollut Res Int; 2015 Nov; 22(22):17499-507. PubMed ID: 26139402 [TBL] [Abstract][Full Text] [Related]
10. ROS changes are responsible for tributyl phosphate (TBP)-induced toxicity in the alga Phaeodactylum tricornutum. Liu Q; Tang X; Wang Y; Yang Y; Zhang W; Zhao Y; Zhang X Aquat Toxicol; 2019 Mar; 208():168-178. PubMed ID: 30677712 [TBL] [Abstract][Full Text] [Related]
11. Behavior and toxicity assessment of copper nanoparticles in aquatic environment: A case study on red swamp crayfish. Yang L; He Z; Li X; Jiang Z; Xuan F; Tang B; Bian X J Environ Manage; 2022 Jul; 313():114986. PubMed ID: 35390660 [TBL] [Abstract][Full Text] [Related]
12. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum? Sendra M; Staffieri E; Yeste MP; Moreno-Garrido I; Gatica JM; Corsi I; Blasco J Environ Pollut; 2019 Jun; 249():610-619. PubMed ID: 30933758 [TBL] [Abstract][Full Text] [Related]
13. Toxicological effects of CdSe nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach. Poirier I; Pallud M; Kuhn L; Hammann P; Demortière A; Jamali A; Chicher J; Caplat C; Gallon RK; Bertrand M Ecotoxicol Environ Saf; 2018 May; 152():78-90. PubMed ID: 29407785 [TBL] [Abstract][Full Text] [Related]
14. Using transcriptomic profiles in the diatom Phaeodactylum tricornutum to identify and prioritize stressors. Osborn HL; Hook SE Aquat Toxicol; 2013 Aug; 138-139():12-25. PubMed ID: 23680677 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the toxic response induced by BDE-47 in a marine alga, Phaeodactylum tricornutum, based on photosynthesis-related parameters. Liu Q; Tang X; Zhang X; Yang Y; Sun Z; Jian X; Zhao Y; Zhang X Aquat Toxicol; 2020 Oct; 227():105588. PubMed ID: 32861020 [TBL] [Abstract][Full Text] [Related]
16. Copper Nanoparticles and Copper Sulphate Induced Cytotoxicity in Hepatocyte Primary Cultures of Epinephelus coioides. Wang T; Chen X; Long X; Liu Z; Yan S PLoS One; 2016; 11(2):e0149484. PubMed ID: 26890000 [TBL] [Abstract][Full Text] [Related]
17. The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Wang T; Long X; Cheng Y; Liu Z; Yan S Aquat Toxicol; 2014 Jul; 152():96-104. PubMed ID: 24742820 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the Proteome of the Marine Diatom Phaeodactylum tricornutum Exposed to Aluminum Providing Insights into Aluminum Toxicity Mechanisms. Xie J; Bai X; Lavoie M; Lu H; Fan X; Pan X; Fu Z; Qian H Environ Sci Technol; 2015 Sep; 49(18):11182-90. PubMed ID: 26308585 [TBL] [Abstract][Full Text] [Related]
19. Impact of silver nanoparticles on marine diatom Skeletonema costatum. Huang J; Cheng J; Yi J J Appl Toxicol; 2016 Oct; 36(10):1343-54. PubMed ID: 27080522 [TBL] [Abstract][Full Text] [Related]
20. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Levy JL; Angel BM; Stauber JL; Poon WL; Simpson SL; Cheng SH; Jolley DF Aquat Toxicol; 2008 Aug; 89(2):82-93. PubMed ID: 18639348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]