BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28881490)

  • 21. Low-Shot Deep Learning of Diabetic Retinopathy With Potential Applications to Address Artificial Intelligence Bias in Retinal Diagnostics and Rare Ophthalmic Diseases.
    Burlina P; Paul W; Mathew P; Joshi N; Pacheco KD; Bressler NM
    JAMA Ophthalmol; 2020 Oct; 138(10):1070-1077. PubMed ID: 32880609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance of deep neural network-based artificial intelligence method in diabetic retinopathy screening: a systematic review and meta-analysis of diagnostic test accuracy.
    Wang S; Zhang Y; Lei S; Zhu H; Li J; Wang Q; Yang J; Chen S; Pan H
    Eur J Endocrinol; 2020 Jun; 183(1):41-49. PubMed ID: 32504495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diabetic retinopathy detection using red lesion localization and convolutional neural networks.
    Zago GT; Andreão RV; Dorizzi B; Teatini Salles EO
    Comput Biol Med; 2020 Jan; 116():103537. PubMed ID: 31747632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detecting Anomalies in Retinal Diseases Using Generative, Discriminative, and Self-supervised Deep Learning.
    Burlina P; Paul W; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2022 Feb; 140(2):185-189. PubMed ID: 34967890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data.
    Sánchez CI; Niemeijer M; Dumitrescu AV; Suttorp-Schulten MS; Abràmoff MD; van Ginneken B
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(7):4866-71. PubMed ID: 21527381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning.
    Abràmoff MD; Lou Y; Erginay A; Clarida W; Amelon R; Folk JC; Niemeijer M
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5200-5206. PubMed ID: 27701631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network.
    Liu YP; Li Z; Xu C; Li J; Liang R
    Artif Intell Med; 2019 Aug; 99():101694. PubMed ID: 31606108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adding retinal photography to screening for diabetic retinopathy: a prospective study in primary care.
    O'Hare JP; Hopper A; Madhaven C; Charny M; Purewell TS; Harney B; Griffiths J
    BMJ; 1996 Mar; 312(7032):679-82. PubMed ID: 8597737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diabetic retinopathy screening in the emerging era of artificial intelligence.
    Grauslund J
    Diabetologia; 2022 Sep; 65(9):1415-1423. PubMed ID: 35639120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-Mydriatic Fundus Camera Screening for Referral-Warranted Diabetic Retinopathy in a Northern California Safety-Net Setting.
    Toy BC; Aguinaldo T; Eliason J; Egbert J
    Ophthalmic Surg Lasers Imaging Retina; 2016 Jul; 47(7):636-42. PubMed ID: 27434895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial Intelligence in Diabetic Retinopathy: Insights from a Meta-Analysis of Deep Learning.
    Poly TN; Islam MM; Yang HC; Nguyen PA; Wu CC; Li YJ
    Stud Health Technol Inform; 2019 Aug; 264():1556-1557. PubMed ID: 31438229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study.
    Ming S; Xie K; Lei X; Yang Y; Zhao Z; Li S; Jin X; Lei B
    Int Ophthalmol; 2021 Apr; 41(4):1291-1299. PubMed ID: 33389425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating the impact of optical coherence tomography in diabetic retinopathy screening for an Aboriginal population.
    O'Halloran RA; Turner AW
    Clin Exp Ophthalmol; 2018 Mar; 46(2):116-121. PubMed ID: 28677229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of perimacular red dots and blots when screening for diabetic retinopathy: Refer or not refer?
    Baltatescu A; Striglia E; Trento M; Mazzeo A; Cavallo F; Charrier L; Porta M
    Diab Vasc Dis Res; 2018 Jul; 15(4):356-359. PubMed ID: 29775089
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes.
    Abràmoff MD; Niemeijer M; Suttorp-Schulten MS; Viergever MA; Russell SR; van Ginneken B
    Diabetes Care; 2008 Feb; 31(2):193-8. PubMed ID: 18024852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.
    Jaya T; Dheeba J; Singh NA
    J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multimedia data mining for automatic diabetic retinopathy screening.
    Quellec G; Lamard M; Cochener B; Decencière E; Lay B; Chabouis A; Roux C; Cazuguel G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7144-7. PubMed ID: 24111392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of automated disease detection in diabetic retinopathy screening using two-field photography.
    Goatman K; Charnley A; Webster L; Nussey S
    PLoS One; 2011; 6(12):e27524. PubMed ID: 22174741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated detection of exudates for diabetic retinopathy screening.
    Fleming AD; Philip S; Goatman KA; Williams GJ; Olson JA; Sharp PF
    Phys Med Biol; 2007 Dec; 52(24):7385-96. PubMed ID: 18065845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion.
    Prentašić P; Lončarić S
    Comput Methods Programs Biomed; 2016 Dec; 137():281-292. PubMed ID: 28110732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.