BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28881495)

  • 1. Anatase TiO
    Maroni F; Carbonari G; Croce F; Tossici R; Nobili F
    ChemSusChem; 2017 Dec; 10(23):4771-4777. PubMed ID: 28881495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ synthesis of TiO2(B) nanotube/nanoparticle composite anode materials for lithium ion batteries.
    Liu X; Sun Q; Ng AM; Djurišić AB; Xie M; Liao C; Shih K; Vranješ M; Nedeljković JM; Deng Z
    Nanotechnology; 2015 Oct; 26(42):425403. PubMed ID: 26421360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.
    Wu M; Sabisch JE; Song X; Minor AM; Battaglia VS; Liu G
    Nano Lett; 2013; 13(11):5397-402. PubMed ID: 24079331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering empty space between Si nanoparticles for lithium-ion battery anodes.
    Wu H; Zheng G; Liu N; Carney TJ; Yang Y; Cui Y
    Nano Lett; 2012 Feb; 12(2):904-9. PubMed ID: 22224827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries.
    Chen C; Huang Y; An C; Zhang H; Wang Y; Jiao L; Yuan H
    ChemSusChem; 2015 Jan; 8(1):114-22. PubMed ID: 25425492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotubular Heterostructure of Tin Dioxide/Titanium Dioxide as a Binder-Free Anode in Lithium-Ion Batteries.
    Kim M; Lee J; Lee S; Seo S; Bae C; Shin H
    ChemSusChem; 2015 Jul; 8(14):2363-71. PubMed ID: 25802052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TiO2 (B)/anatase composites synthesized by spray drying as high performance negative electrode material in li-ion batteries.
    Ventosa E; Mei B; Xia W; Muhler M; Schuhmann W
    ChemSusChem; 2013 Aug; 6(8):1312-5. PubMed ID: 23868832
    [No Abstract]   [Full Text] [Related]  

  • 8. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes.
    Hwang TH; Lee YM; Kong BS; Seo JS; Choi JW
    Nano Lett; 2012 Feb; 12(2):802-7. PubMed ID: 22206272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ALD TiO2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and coulombic efficiency.
    Memarzadeh Lotfabad E; Kalisvaart P; Cui K; Kohandehghan A; Kupsta M; Olsen B; Mitlin D
    Phys Chem Chem Phys; 2013 Aug; 15(32):13646-57. PubMed ID: 23836149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries.
    Zhou M; Pu F; Wang Z; Cai T; Chen H; Zhang H; Guan S
    Phys Chem Chem Phys; 2013 Jul; 15(27):11394-401. PubMed ID: 23740151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Lithium Insertion Voltage Single-Crystal H
    Guo Q; Chen L; Shan Z; Lee WSV; Xiao W; Liu Z; Liang J; Yang G; Xue J
    ChemSusChem; 2018 Jan; 11(1):299-310. PubMed ID: 29106030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.
    Osiak MJ; Armstrong E; Kennedy T; Torres CM; Ryan KM; O'Dwyer C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8195-202. PubMed ID: 23952971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode.
    Chang J; Huang X; Zhou G; Cui S; Hallac PB; Jiang J; Hurley PT; Chen J
    Adv Mater; 2014 Feb; 26(5):758-64. PubMed ID: 24115353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.
    Wen Y; Zhu Y; Langrock A; Manivannan A; Ehrman SH; Wang C
    Small; 2013 Aug; 9(16):2810-6. PubMed ID: 23440956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes.
    Zhang C; Ma Q; Cai M; Zhao Z; Xie H; Ning Z; Wang D; Yin H
    Waste Manag; 2021 Nov; 135():182-189. PubMed ID: 34509770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.
    Shen L; Shen L; Wang Z; Chen L
    ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast-Charging and Long-Life Li-Ion Battery Anodes of TiO
    Li K; Li B; Wu J; Kang F; Kim JK; Zhang TY
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35917-35926. PubMed ID: 28952316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature hydrogen reduction of high surface area anatase and anatase/β-TiO₂ for high-charging-rate batteries.
    Ventosa E; Tymoczko A; Xie K; Xia W; Muhler M; Schuhmann W
    ChemSusChem; 2014 Sep; 7(9):2584-9. PubMed ID: 25044925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.
    Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S
    ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.