BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28881874)

  • 1. Oncopression: gene expression compendium for cancer with matched normal tissues.
    Lee J; Choi C
    Bioinformatics; 2017 Jul; 33(13):2068-2070. PubMed ID: 28881874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying cancer-related microRNAs based on gene expression data.
    Zhao XM; Liu KQ; Zhu G; He F; Duval B; Richer JM; Huang DS; Jiang CJ; Hao JK; Chen L
    Bioinformatics; 2015 Apr; 31(8):1226-34. PubMed ID: 25505085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of combinatorial Boolean rules of synergistic gene sets from cancer microarray datasets.
    Park I; Lee KH; Lee D
    Bioinformatics; 2010 Jun; 26(12):1506-12. PubMed ID: 20410052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personalized identification of altered pathways in cancer using accumulated normal tissue data.
    Ahn T; Lee E; Huh N; Park T
    Bioinformatics; 2014 Sep; 30(17):i422-9. PubMed ID: 25161229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive approach to gene expression profiling in immune cells.
    Carpentier S; Romagné F; Vivier E
    Methods Enzymol; 2020; 636():1-47. PubMed ID: 32178815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor origin detection with tissue-specific miRNA and DNA methylation markers.
    Tang W; Wan S; Yang Z; Teschendorff AE; Zou Q
    Bioinformatics; 2018 Feb; 34(3):398-406. PubMed ID: 29028927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GEPIS--quantitative gene expression profiling in normal and cancer tissues.
    Zhang Y; Eberhard DA; Frantz GD; Dowd P; Wu TD; Zhou Y; Watanabe C; Luoh SM; Polakis P; Hillan KJ; Wood WI; Zhang Z
    Bioinformatics; 2004 Oct; 20(15):2390-8. PubMed ID: 15073007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method for constructing tumor specific gene co-expression networks based on samples with tumor purity heterogeneity.
    Petralia F; Wang L; Peng J; Yan A; Zhu J; Wang P
    Bioinformatics; 2018 Jul; 34(13):i528-i536. PubMed ID: 29949994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smoothing waves in array CGH tumor profiles.
    van de Wiel MA; Brosens R; Eilers PH; Kumps C; Meijer GA; Menten B; Sistermans E; Speleman F; Timmerman ME; Ylstra B
    Bioinformatics; 2009 May; 25(9):1099-104. PubMed ID: 19276148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Cancer Related Genes Using a Comprehensive Map of Human Gene Expression.
    Torrente A; Lukk M; Xue V; Parkinson H; Rung J; Brazma A
    PLoS One; 2016; 11(6):e0157484. PubMed ID: 27322383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint analysis of expression profiles from multiple cancers improves the identification of microRNA-gene interactions.
    Chen X; Slack FJ; Zhao H
    Bioinformatics; 2013 Sep; 29(17):2137-45. PubMed ID: 23772050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data.
    Franks JM; Cai G; Whitfield ML
    Bioinformatics; 2018 Jun; 34(11):1868-1874. PubMed ID: 29360996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADEPTUS: a discovery tool for disease prediction, enrichment and network analysis based on profiles from many diseases.
    Amar D; Vizel A; Levy C; Shamir R
    Bioinformatics; 2018 Jun; 34(11):1959-1961. PubMed ID: 29360930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CancerLivER: a database of liver cancer gene expression resources and biomarkers.
    Kaur H; Bhalla S; Kaur D; Raghava GP
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32147717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MACE: mutation-oriented profiling of chemical response and gene expression in cancers.
    Jeong E; He N; Park H; Song M; Kim N; Lee S; Yoon S
    Bioinformatics; 2015 May; 31(9):1508-14. PubMed ID: 25536965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism.
    Angione C
    Bioinformatics; 2018 Feb; 34(3):494-501. PubMed ID: 28968777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled two-way clustering analysis of breast cancer and colon cancer gene expression data.
    Getz G; Gal H; Kela I; Notterman DA; Domany E
    Bioinformatics; 2003 Jun; 19(9):1079-89. PubMed ID: 12801868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.
    Iacobuzio-Donahue CA; Ashfaq R; Maitra A; Adsay NV; Shen-Ong GL; Berg K; Hollingsworth MA; Cameron JL; Yeo CJ; Kern SE; Goggins M; Hruban RH
    Cancer Res; 2003 Dec; 63(24):8614-22. PubMed ID: 14695172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GE-mini: a mobile APP for large-scale gene expression visualization.
    Tang Z; Li C; Zhang K; Yang M; Hu X
    Bioinformatics; 2017 Mar; 33(6):941-943. PubMed ID: 28065896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.