BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 28881969)

  • 1. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding.
    Zeng M; Wu Y; Lu C; Zhang F; Wu FX; Li M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34498677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence.
    Deng L; Wu H; Liu X; Liu H
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent Neural Network for Predicting Transcription Factor Binding Sites.
    Shen Z; Bao W; Huang DS
    Sci Rep; 2018 Oct; 8(1):15270. PubMed ID: 30323198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deepro-Glu: combination of convolutional neural network and Bi-LSTM models using ProtBert and handcrafted features to identify lysine glutarylation sites.
    Wang X; Ding Z; Wang R; Lin X
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36653898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers.
    Chen S; Gan M; Lv H; Jiang R
    Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):565-577. PubMed ID: 33581335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MirLocPredictor: A ConvNet-Based Multi-Label MicroRNA Subcellular Localization Predictor by Incorporating k-Mer Positional Information.
    Asim MN; Malik MI; Zehe C; Trygg J; Dengel A; Ahmed S
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33316943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction.
    Wang J; Zhao Y; Gong W; Liu Y; Wang M; Huang X; Tan J
    BMC Bioinformatics; 2021 Mar; 22(1):133. PubMed ID: 33740884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SG-LSTM-FRAME: a computational frame using sequence and geometrical information via LSTM to predict miRNA-gene associations.
    Xie W; Luo J; Pan C; Liu Y
    Brief Bioinform; 2021 Mar; 22(2):2032-2042. PubMed ID: 32181478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeeReCT-APA: Prediction of Alternative Polyadenylation Site Usage Through Deep Learning.
    Li Z; Li Y; Zhang B; Li Y; Long Y; Zhou J; Zou X; Zhang M; Hu Y; Chen W; Gao X
    Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):483-495. PubMed ID: 33662629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving plant miRNA-target prediction with self-supervised k-mer embedding and spectral graph convolutional neural network.
    Zhang W; Zhang P; Sun W; Xu J; Liao L; Cao Y; Han Y
    PeerJ; 2024; 12():e17396. PubMed ID: 38799058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating multi-network topology for gene function prediction using deep neural networks.
    Peng J; Xue H; Wei Z; Tuncali I; Hao J; Shang X
    Brief Bioinform; 2021 Mar; 22(2):2096-2105. PubMed ID: 32249297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved protein relative solvent accessibility prediction using deep multi-view feature learning framework.
    Fan XQ; Hu J; Jia NX; Yu DJ; Zhang GJ
    Anal Biochem; 2021 Oct; 631():114358. PubMed ID: 34478704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepASDPred: a CNN-LSTM-based deep learning method for Autism spectrum disorders risk RNA identification.
    Fan Y; Xiong H; Sun G
    BMC Bioinformatics; 2023 Jun; 24(1):261. PubMed ID: 37349705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sequence-based deep learning approach to predict CTCF-mediated chromatin loop.
    Lv H; Dao FY; Zulfiqar H; Su W; Ding H; Liu L; Lin H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.