BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28881988)

  • 1. Discovery and genotyping of novel sequence insertions in many sequenced individuals.
    Kavak P; Lin YY; Numanagic I; Asghari H; Güngör T; Alkan C; Hach F
    Bioinformatics; 2017 Jul; 33(14):i161-i169. PubMed ID: 28881988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GateKeeper: a new hardware architecture for accelerating pre-alignment in DNA short read mapping.
    Alser M; Hassan H; Xin H; Ergin O; Mutlu O; Alkan C
    Bioinformatics; 2017 Nov; 33(21):3355-3363. PubMed ID: 28575161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A benchmark and an algorithm for detecting germline transposon insertions and measuring de novo transposon insertion frequencies.
    Yu T; Huang X; Dou S; Tang X; Luo S; Theurkauf WE; Lu J; Weng Z
    Nucleic Acids Res; 2021 May; 49(8):e44. PubMed ID: 33511407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and characterization of novel sequence insertions using paired-end next-generation sequencing.
    Hajirasouliha I; Hormozdiari F; Alkan C; Kidd JM; Birol I; Eichler EE; Sahinalp SC
    Bioinformatics; 2010 May; 26(10):1277-83. PubMed ID: 20385726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SVmine improves structural variation detection by integrative mining of predictions from multiple algorithms.
    Xia Y; Liu Y; Deng M; Xi R
    Bioinformatics; 2017 Nov; 33(21):3348-3354. PubMed ID: 29036467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PopIns: population-scale detection of novel sequence insertions.
    Kehr B; Melsted P; Halldórsson BV
    Bioinformatics; 2016 Apr; 32(7):961-7. PubMed ID: 25926346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RepLong: de novo repeat identification using long read sequencing data.
    Guo R; Li YR; He S; Ou-Yang L; Sun Y; Zhu Z
    Bioinformatics; 2018 Apr; 34(7):1099-1107. PubMed ID: 29126180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SV2: accurate structural variation genotyping and de novo mutation detection from whole genomes.
    Antaki D; Brandler WM; Sebat J
    Bioinformatics; 2018 May; 34(10):1774-1777. PubMed ID: 29300834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of tandem and interspersed segmental duplications using high-throughput sequencing.
    Soylev A; Le TM; Amini H; Alkan C; Hormozdiari F
    Bioinformatics; 2019 Oct; 35(20):3923-3930. PubMed ID: 30937433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ARCS: scaffolding genome drafts with linked reads.
    Yeo S; Coombe L; Warren RL; Chu J; Birol I
    Bioinformatics; 2018 Mar; 34(5):725-731. PubMed ID: 29069293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ARAMIS: From systematic errors of NGS long reads to accurate assemblies.
    Sacristán-Horcajada E; González-de la Fuente S; Peiró-Pastor R; Carrasco-Ramiro F; Amils R; Requena JM; Berenguer J; Aguado B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CSAR: a contig scaffolding tool using algebraic rearrangements.
    Chen KT; Liu CL; Huang SH; Shen HT; Shieh YK; Chiu HT; Lu CL
    Bioinformatics; 2018 Jan; 34(1):109-111. PubMed ID: 28968788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping.
    Zhan B; Fadista J; Thomsen B; Hedegaard J; Panitz F; Bendixen C
    BMC Genomics; 2011 Nov; 12():557. PubMed ID: 22082336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging reads that span multiple single nucleotide polymorphisms for haplotype inference from sequencing data.
    Yang WY; Hormozdiari F; Wang Z; He D; Pasaniuc B; Eskin E
    Bioinformatics; 2013 Sep; 29(18):2245-52. PubMed ID: 23825370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery, genotyping and characterization of structural variation and novel sequence at single nucleotide resolution from de novo genome assemblies on a population scale.
    Liu S; Huang S; Rao J; Ye W; ; Krogh A; Wang J
    Gigascience; 2015; 4():64. PubMed ID: 26705468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. lordFAST: sensitive and Fast Alignment Search Tool for LOng noisy Read sequencing Data.
    Haghshenas E; Sahinalp SC; Hach F
    Bioinformatics; 2019 Jan; 35(1):20-27. PubMed ID: 30561550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. rMFilter: acceleration of long read-based structure variation calling by chimeric read filtering.
    Liu B; Jiang T; Yiu SM; Li J; Wang Y
    Bioinformatics; 2017 Sep; 33(17):2750-2752. PubMed ID: 28482046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mInDel: a high-throughput and efficient pipeline for genome-wide InDel marker development.
    Lv Y; Liu Y; Zhao H
    BMC Genomics; 2016 Apr; 17():290. PubMed ID: 27079510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data.
    Allam A; Kalnis P; Solovyev V
    Bioinformatics; 2015 Nov; 31(21):3421-8. PubMed ID: 26177965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population-scale detection of non-reference sequence variants using colored de Bruijn graphs.
    Krannich T; White WTJ; Niehus S; Holley G; Halldórsson BV; Kehr B
    Bioinformatics; 2022 Jan; 38(3):604-611. PubMed ID: 34726732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.