These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 28881998)
1. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression. Ammad-Ud-Din M; Khan SA; Wennerberg K; Aittokallio T Bioinformatics; 2017 Jul; 33(14):i359-i368. PubMed ID: 28881998 [TBL] [Abstract][Full Text] [Related]
2. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization. Ammad-Ud-Din M; Khan SA; Malani D; Murumägi A; Kallioniemi O; Aittokallio T; Kaski S Bioinformatics; 2016 Sep; 32(17):i455-i463. PubMed ID: 27587662 [TBL] [Abstract][Full Text] [Related]
3. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies. Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455 [TBL] [Abstract][Full Text] [Related]
4. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration. Wang Y; Yang Y; Chen S; Wang J Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890 [TBL] [Abstract][Full Text] [Related]
5. Learning with multiple pairwise kernels for drug bioactivity prediction. Cichonska A; Pahikkala T; Szedmak S; Julkunen H; Airola A; Heinonen M; Aittokallio T; Rousu J Bioinformatics; 2018 Jul; 34(13):i509-i518. PubMed ID: 29949975 [TBL] [Abstract][Full Text] [Related]
6. Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction. Liu X; Song C; Liu S; Li M; Zhou X; Zhang W Bioinformatics; 2022 Oct; 38(20):4782-4789. PubMed ID: 36000898 [TBL] [Abstract][Full Text] [Related]
7. Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning. Gönen M; Margolin AA Bioinformatics; 2014 Sep; 30(17):i556-63. PubMed ID: 25161247 [TBL] [Abstract][Full Text] [Related]
8. Predicting anti-cancer drug response by finding optimal subset of drugs. Yassaee Meybodi F; Eslahchi C Bioinformatics; 2021 Dec; 37(23):4509-4516. PubMed ID: 34170297 [TBL] [Abstract][Full Text] [Related]
9. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach. Ali M; Khan SA; Wennerberg K; Aittokallio T Bioinformatics; 2018 Apr; 34(8):1353-1362. PubMed ID: 29186355 [TBL] [Abstract][Full Text] [Related]
10. Improving genomics-based predictions for precision medicine through active elicitation of expert knowledge. Sundin I; Peltola T; Micallef L; Afrabandpey H; Soare M; Mamun Majumder M; Daee P; He C; Serim B; Havulinna A; Heckman C; Jacucci G; Marttinen P; Kaski S Bioinformatics; 2018 Jul; 34(13):i395-i403. PubMed ID: 29949984 [TBL] [Abstract][Full Text] [Related]
11. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach. Emdadi A; Eslahchi C J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927 [TBL] [Abstract][Full Text] [Related]
12. Predicting Cancer Drug Response using a Recommender System. Suphavilai C; Bertrand D; Nagarajan N Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820 [TBL] [Abstract][Full Text] [Related]
13. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions. Peng W; Liu H; Dai W; Yu N; Wang J Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568 [TBL] [Abstract][Full Text] [Related]
14. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Preuer K; Lewis RPI; Hochreiter S; Bender A; Bulusu KC; Klambauer G Bioinformatics; 2018 May; 34(9):1538-1546. PubMed ID: 29253077 [TBL] [Abstract][Full Text] [Related]
15. DTF: Deep Tensor Factorization for predicting anticancer drug synergy. Sun Z; Huang S; Jiang P; Hu P Bioinformatics; 2020 Aug; 36(16):4483-4489. PubMed ID: 32369563 [TBL] [Abstract][Full Text] [Related]
16. Identification of structural features in chemicals associated with cancer drug response: a systematic data-driven analysis. Khan SA; Virtanen S; Kallioniemi OP; Wennerberg K; Poso A; Kaski S Bioinformatics; 2014 Sep; 30(17):i497-504. PubMed ID: 25161239 [TBL] [Abstract][Full Text] [Related]
17. PLATYPUS: A Multiple-View Learning Predictive Framework for Cancer Drug Sensitivity Prediction. Graim K; Friedl V; Houlahan KE; Stuart JM Pac Symp Biocomput; 2019; 24():136-147. PubMed ID: 30864317 [TBL] [Abstract][Full Text] [Related]
18. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases. Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618 [TBL] [Abstract][Full Text] [Related]
19. Network-based drug sensitivity prediction. Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891 [TBL] [Abstract][Full Text] [Related]
20. Hi-GeoMVP: a hierarchical geometry-enhanced deep learning model for drug response prediction. Chen Y; Zhang L Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38614131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]