These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. LoFtool: a gene intolerance score based on loss-of-function variants in 60 706 individuals. Fadista J; Oskolkov N; Hansson O; Groop L Bioinformatics; 2017 Feb; 33(4):471-474. PubMed ID: 27563026 [TBL] [Abstract][Full Text] [Related]
23. Using ALoFT to determine the impact of putative loss-of-function variants in protein-coding genes. Balasubramanian S; Fu Y; Pawashe M; McGillivray P; Jin M; Liu J; Karczewski KJ; MacArthur DG; Gerstein M Nat Commun; 2017 Aug; 8(1):382. PubMed ID: 28851873 [TBL] [Abstract][Full Text] [Related]
24. Penetrance of pathogenic mutations in haploinsufficient genes for intellectual disability and related disorders. Ropers HH; Wienker T Eur J Med Genet; 2015 Dec; 58(12):715-8. PubMed ID: 26506440 [TBL] [Abstract][Full Text] [Related]
26. AI-derived comparative assessment of the performance of pathogenicity prediction tools on missense variants of breast cancer genes. Ahmad RM; Ali BR; Al-Jasmi F; Al Dhaheri N; Al Turki S; Kizhakkedath P; Mohamad MS Hum Genomics; 2024 Sep; 18(1):99. PubMed ID: 39256852 [TBL] [Abstract][Full Text] [Related]
27. DeepLoc: prediction of protein subcellular localization using deep learning. Almagro Armenteros JJ; Sønderby CK; Sønderby SK; Nielsen H; Winther O Bioinformatics; 2017 Nov; 33(21):3387-3395. PubMed ID: 29036616 [TBL] [Abstract][Full Text] [Related]
28. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier. Kulmanov M; Khan MA; Hoehndorf R; Wren J Bioinformatics; 2018 Feb; 34(4):660-668. PubMed ID: 29028931 [TBL] [Abstract][Full Text] [Related]
29. Identifying Mendelian disease genes with the variant effect scoring tool. Carter H; Douville C; Stenson PD; Cooper DN; Karchin R BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S3. PubMed ID: 23819870 [TBL] [Abstract][Full Text] [Related]
30. VPatho: a deep learning-based two-stage approach for accurate prediction of gain-of-function and loss-of-function variants. Ge F; Li C; Iqbal S; Muhammad A; Li F; Thafar MA; Yan Z; Worachartcheewan A; Xu X; Song J; Yu DJ Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36528806 [TBL] [Abstract][Full Text] [Related]
31. Structure-based prediction of protein- peptide binding regions using Random Forest. Taherzadeh G; Zhou Y; Liew AW; Yang Y Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926 [TBL] [Abstract][Full Text] [Related]
32. Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information. Bao L; Cui Y Bioinformatics; 2005 May; 21(10):2185-90. PubMed ID: 15746281 [TBL] [Abstract][Full Text] [Related]
33. Flattening the curve-How to get better results with small deep-mutational-scanning datasets. Wirnsberger G; Pritišanac I; Oberdorfer G; Gruber K Proteins; 2024 Jul; 92(7):886-902. PubMed ID: 38501649 [TBL] [Abstract][Full Text] [Related]
34. A new bioinformatics tool to help assess the significance of BRCA1 variants. Cusin I; Teixeira D; Zahn-Zabal M; Rech de Laval V; Gleizes A; Viassolo V; Chappuis PO; Hutter P; Bairoch A; Gaudet P Hum Genomics; 2018 Jul; 12(1):36. PubMed ID: 29996917 [TBL] [Abstract][Full Text] [Related]
35. Predicting mutant outcome by combining deep mutational scanning and machine learning. Sarfati H; Naftaly S; Papo N; Keasar C Proteins; 2022 Jan; 90(1):45-57. PubMed ID: 34293212 [TBL] [Abstract][Full Text] [Related]
36. MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing. Mort M; Sterne-Weiler T; Li B; Ball EV; Cooper DN; Radivojac P; Sanford JR; Mooney SD Genome Biol; 2014 Jan; 15(1):R19. PubMed ID: 24451234 [TBL] [Abstract][Full Text] [Related]
38. ISPRED4: interaction sites PREDiction in protein structures with a refining grammar model. Savojardo C; Fariselli P; Martelli PL; Casadio R Bioinformatics; 2017 Jun; 33(11):1656-1663. PubMed ID: 28130235 [TBL] [Abstract][Full Text] [Related]
39. Learned protein embeddings for machine learning. Yang KK; Wu Z; Bedbrook CN; Arnold FH Bioinformatics; 2018 Aug; 34(15):2642-2648. PubMed ID: 29584811 [TBL] [Abstract][Full Text] [Related]
40. Enrich: software for analysis of protein function by enrichment and depletion of variants. Fowler DM; Araya CL; Gerard W; Fields S Bioinformatics; 2011 Dec; 27(24):3430-1. PubMed ID: 22006916 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]