BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28882005)

  • 1. CATS (Coordinates of Atoms by Taylor Series): protein design with backbone flexibility in all locally feasible directions.
    Hallen MA; Donald BR
    Bioinformatics; 2017 Jul; 33(14):i5-i12. PubMed ID: 28882005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility.
    Hallen MA; Keedy DA; Donald BR
    Proteins; 2013 Jan; 81(1):18-39. PubMed ID: 22821798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OSPREY: protein design with ensembles, flexibility, and provable algorithms.
    Gainza P; Roberts KE; Georgiev I; Lilien RH; Keedy DA; Chen CY; Reza F; Anderson AC; Richardson DC; Richardson JS; Donald BR
    Methods Enzymol; 2013; 523():87-107. PubMed ID: 23422427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BBK* (Branch and Bound Over K*): A Provable and Efficient Ensemble-Based Protein Design Algorithm to Optimize Stability and Binding Affinity Over Large Sequence Spaces.
    Ojewole AA; Jou JD; Fowler VG; Donald BR
    J Comput Biol; 2018 Jul; 25(7):726-739. PubMed ID: 29641249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient parallel algorithm for accelerating computational protein design.
    Zhou Y; Xu W; Donald BR; Zeng J
    Bioinformatics; 2014 Jun; 30(12):i255-i263. PubMed ID: 24931991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimization-Aware Recursive
    Jou JD; Holt GT; Lowegard AU; Donald BR
    J Comput Biol; 2020 Apr; 27(4):550-564. PubMed ID: 31855059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein design using continuous rotamers.
    Gainza P; Roberts KE; Donald BR
    PLoS Comput Biol; 2012 Jan; 8(1):e1002335. PubMed ID: 22279426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel Computational Protein Design.
    Zhou Y; Donald BR; Zeng J
    Methods Mol Biol; 2017; 1529():265-277. PubMed ID: 27914056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithm for backrub motions in protein design.
    Georgiev I; Keedy D; Richardson JS; Richardson DC; Donald BR
    Bioinformatics; 2008 Jul; 24(13):i196-204. PubMed ID: 18586714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple model of backbone flexibility improves modeling of side-chain conformational variability.
    Friedland GD; Linares AJ; Smith CA; Kortemme T
    J Mol Biol; 2008 Jul; 380(4):757-74. PubMed ID: 18547586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OSPREY 3.0: Open-source protein redesign for you, with powerful new features.
    Hallen MA; Martin JW; Ojewole A; Jou JD; Lowegard AU; Frenkel MS; Gainza P; Nisonoff HM; Mukund A; Wang S; Holt GT; Zhou D; Dowd E; Donald BR
    J Comput Chem; 2018 Nov; 39(30):2494-2507. PubMed ID: 30368845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions.
    Shapovalov MV; Dunbrack RL
    Structure; 2011 Jun; 19(6):844-58. PubMed ID: 21645855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AbDesign: An algorithm for combinatorial backbone design guided by natural conformations and sequences.
    Lapidoth GD; Baran D; Pszolla GM; Norn C; Alon A; Tyka MD; Fleishman SJ
    Proteins; 2015 Aug; 83(8):1385-406. PubMed ID: 25670500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved energy bound accuracy enhances the efficiency of continuous protein design.
    Roberts KE; Donald BR
    Proteins; 2015 Jun; 83(6):1151-64. PubMed ID: 25846627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
    Ojewole A; Lowegard A; Gainza P; Reeve SM; Georgiev I; Anderson AC; Donald BR
    Methods Mol Biol; 2017; 1529():291-306. PubMed ID: 27914058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact Representation of Continuous Energy Surfaces for More Efficient Protein Design.
    Hallen MA; Gainza P; Donald BR
    J Chem Theory Comput; 2015 May; 11(5):2292-306. PubMed ID: 26089744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast, clash-free RNA conformational morphing using molecular junctions.
    Héliou A; Budday D; Fonseca R; van den Bedem H
    Bioinformatics; 2017 Jul; 33(14):2114-2122. PubMed ID: 28334257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iCFN: an efficient exact algorithm for multistate protein design.
    Karimi M; Shen Y
    Bioinformatics; 2018 Sep; 34(17):i811-i820. PubMed ID: 30423073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient flexible backbone protein-protein docking for challenging targets.
    Marze NA; Roy Burman SS; Sheffler W; Gray JJ
    Bioinformatics; 2018 Oct; 34(20):3461-3469. PubMed ID: 29718115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.