These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28882043)

  • 1. Water Adsorption Isotherms on Fly Ash from Several Sources.
    Navea JG; Richmond E; Stortini T; Greenspan J
    Langmuir; 2017 Oct; 33(39):10161-10171. PubMed ID: 28882043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models.
    Hatch CD; Wiese JS; Crane CC; Harris KJ; Kloss HG; Baltrusaitis J
    Langmuir; 2012 Jan; 28(3):1790-803. PubMed ID: 22181675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-situ deposition of silver-iron oxide nanoparticles on the surface of fly ash for water purification.
    Joshi MK; Pant HR; Liao N; Kim JH; Kim HJ; Park CH; Kim CS
    J Colloid Interface Sci; 2015 Sep; 453():159-168. PubMed ID: 25985419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuated total reflection fourier transform infrared spectroscopy to investigate water uptake and phase transitions in atmospherically relevant particles.
    Schuttlefield J; Al-Hosney H; Zachariah A; Grassian VH
    Appl Spectrosc; 2007 Mar; 61(3):283-92. PubMed ID: 17389068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the coal fly ashes using IR spectroscopy.
    Mozgawa W; Król M; Dyczek J; Deja J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():889-94. PubMed ID: 24935825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of water adsorption and capillary bridge formation for SiO(2) nanoparticle layers by means of a combined in situ FT-IR reflection spectroscopy and QCM-D set-up.
    Torun B; Kunze C; Zhang C; Kühne TD; Grundmeier G
    Phys Chem Chem Phys; 2014 Apr; 16(16):7377-84. PubMed ID: 24623070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic (V) removal from aqueous system using adsorbent developed from a high iron-containing fly ash.
    Li Y; Zhang FS; Xiu FR
    Sci Total Environ; 2009 Oct; 407(21):5780-6. PubMed ID: 19651428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of Water to Collagen as Studied Using Infrared (IR) Microspectroscopy Combined with Relative Humidity Control System and Quartz Crystal Microbalance.
    Kudo S; Ogawa H; Yamakita E; Watanabe S; Suzuki T; Nakashima S
    Appl Spectrosc; 2017 Jul; 71(7):1621-1632. PubMed ID: 28664780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of arsenic in coal fly ash by acid washing process using dilute H2SO4 solvent.
    Kashiwakura S; Ohno H; Matsubae-Yokoyama K; Kumagai Y; Kubo H; Nagasaka T
    J Hazard Mater; 2010 Sep; 181(1-3):419-25. PubMed ID: 20570439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective utilization of waste ash from MSW and coal co-combustion power plant: Zeolite synthesis.
    Fan Y; Zhang FS; Zhu J; Liu Z
    J Hazard Mater; 2008 May; 153(1-2):382-8. PubMed ID: 17913357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolites.
    Somerset VS; Petrik LF; White RA; Klink MJ; Key D; Iwuoha E
    Talanta; 2004 Sep; 64(1):109-14. PubMed ID: 18969574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of Fly Ash Particles with Mucin and Serum Albumin.
    Guo H; Zhang Y; Huang R; Su R; Qi W; He Z
    Langmuir; 2018 Oct; 34(41):12251-12258. PubMed ID: 30230845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physicochemistry and toxicology of CFA particles.
    Jones T; Brown P; BéruBé K; Wlodarczyk A; Longyi S
    J Toxicol Environ Health A; 2010; 73(5):341-54. PubMed ID: 20155577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of geopolymers from fly and bottom ashes of a thermoelectrical power plant for metallic ions adsorption.
    Peres EC; Netto MS; Mallmann ES; Silva LFO; Foletto EL; Dotto GL
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2699-2706. PubMed ID: 34378138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geopolymeric adsorbents from fly ash for dye removal from aqueous solution.
    Li L; Wang S; Zhu Z
    J Colloid Interface Sci; 2006 Aug; 300(1):52-9. PubMed ID: 16626729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The geochemistry and bioreactivity of fly-ash from coal-burning power stations.
    Jones T; Wlodarczyk A; Koshy L; Brown P; Shao L; BéruBé K
    Biomarkers; 2009 Jul; 14 Suppl 1():45-8. PubMed ID: 19604058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of herbicides on coal fly ash from aqueous solutions.
    Singh N
    J Hazard Mater; 2009 Aug; 168(1):233-7. PubMed ID: 19269091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of metolachlor and atrazine in fly ash amended soils: comparison of optimized isotherm models.
    Ghosh RK; Singh N
    J Environ Sci Health B; 2012; 47(7):718-27. PubMed ID: 22560035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the uptake ability of fly ashes produced after lignite combustion.
    Kantiranis N; Filippidis A; Georgakopoulos A
    J Environ Manage; 2005 Jul; 76(2):119-23. PubMed ID: 15939123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water.
    Ma W; Zong P; Cheng Z; Wang B; Sun Q
    J Hazard Mater; 2014 Feb; 266():19-25. PubMed ID: 24374561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.