BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28882106)

  • 21. RANBP2 evolution and human disease.
    Desgraupes S; Etienne L; Arhel NJ
    FEBS Lett; 2023 Oct; 597(20):2519-2533. PubMed ID: 37795679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of p27kip1 protein expression on the biological behavior of intrahepatic cholangiocarcinoma.
    Taguchi K; Aishima S; Asayama Y; Kajiyama K; Kinukawa N; Shimada M; Sugimachi K; Tsuneyoshi M
    Hepatology; 2001 May; 33(5):1118-23. PubMed ID: 11343239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microglial activation in an amyotrophic lateral sclerosis-like model caused by Ranbp2 loss and nucleocytoplasmic transport impairment in retinal ganglion neurons.
    Cho KI; Yoon D; Yu M; Peachey NS; Ferreira PA
    Cell Mol Life Sci; 2019 Sep; 76(17):3407-3432. PubMed ID: 30944974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of Wnt/β-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma.
    Wang W; Zhong W; Yuan J; Yan C; Hu S; Tong Y; Mao Y; Hu T; Zhang B; Song G
    Oncotarget; 2015 Dec; 6(39):42276-89. PubMed ID: 26474277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB.
    Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R
    Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Androgen induces G3BP2 and SUMO-mediated p53 nuclear export in prostate cancer.
    Ashikari D; Takayama K; Tanaka T; Suzuki Y; Obinata D; Fujimura T; Urano T; Takahashi S; Inoue S
    Oncogene; 2017 Nov; 36(45):6272-6281. PubMed ID: 28692047
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes.
    Miyauchi Y; Yogosawa S; Honda R; Nishida T; Yasuda H
    J Biol Chem; 2002 Dec; 277(51):50131-6. PubMed ID: 12393906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. T-cell receptor (TCR) signaling promotes the assembly of RanBP2/RanGAP1-SUMO1/Ubc9 nuclear pore subcomplex via PKC-θ-mediated phosphorylation of RanGAP1.
    He Y; Yang Z; Zhao CS; Xiao Z; Gong Y; Li YY; Chen Y; Du Y; Feng D; Altman A; Li Y
    Elife; 2021 Jun; 10():. PubMed ID: 34110283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha.
    Dawlaty MM; Malureanu L; Jeganathan KB; Kao E; Sustmann C; Tahk S; Shuai K; Grosschedl R; van Deursen JM
    Cell; 2008 Apr; 133(1):103-15. PubMed ID: 18394993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The nuclear pore component Nup358 promotes transportin-dependent nuclear import.
    Hutten S; Wälde S; Spillner C; Hauber J; Kehlenbach RH
    J Cell Sci; 2009 Apr; 122(Pt 8):1100-10. PubMed ID: 19299463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type.
    Pichler A; Knipscheer P; Saitoh H; Sixma TK; Melchior F
    Nat Struct Mol Biol; 2004 Oct; 11(10):984-91. PubMed ID: 15378033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of adenovirus-mediated p27kip1 lacking the Jab1-binding region enhances cytotoxicity and inhibits xenografted human cholangiocarcinoma growth.
    Shiraso S; Katayose Y; Yamamoto K; Mizuma M; Yabuuchi S; Oda A; Rikiyama T; Onogawa T; Yoshida H; Hayashi H; Ohtsuka H; Motoi F; Egawa S; Kato J; Unno M
    Anticancer Res; 2009 Jun; 29(6):2015-24. PubMed ID: 19528460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HDAC-class II specific inhibition involves HDAC proteasome-dependent degradation mediated by RANBP2.
    Scognamiglio A; Nebbioso A; Manzo F; Valente S; Mai A; Altucci L
    Biochim Biophys Acta; 2008 Oct; 1783(10):2030-8. PubMed ID: 18691615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of RanBP2- and kinesin-mediated transport pathways with restricted neuronal and subcellular localization.
    Mavlyutov TA; Cai Y; Ferreira PA
    Traffic; 2002 Sep; 3(9):630-40. PubMed ID: 12191015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adenovirus expressing p27KIP1 induces apoptosis against cholangiocarcinoma cells by triggering Fas ligand on the cell surface.
    Yamamoto K; Katayose Y; Suzuki M; Unno M; Sasaki T; Mizuma M; Shiraso S; Ohtuka H; Cowan KH; Seth P; Matsuno S
    Hepatogastroenterology; 2003; 50(54):1847-53. PubMed ID: 14696417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of silencing annexin A5 on proliferation and invasion of human cholangiocarcinoma cell line.
    Ding XM; Li JX; Wang K; Wu ZS; Yao AH; Jiao CY; Qian JJ; Bai DS; Li XC
    Eur Rev Med Pharmacol Sci; 2017 Apr; 21(7):1477-1488. PubMed ID: 28429360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antisense RhoC gene suppresses proliferation and invasion capacity of human QBC939 cholangiocarcinoma cells.
    Shi Z; Chen ML; He QL; Zeng JH
    Hepatobiliary Pancreat Dis Int; 2007 Oct; 6(5):516-20. PubMed ID: 17897917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EGCG stabilizes p27kip1 in E2-stimulated MCF-7 cells through down-regulation of the Skp2 protein.
    Huang HC; Way TD; Lin CL; Lin JK
    Endocrinology; 2008 Dec; 149(12):5972-83. PubMed ID: 18719023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nup214 is required for CRM1-dependent nuclear protein export in vivo.
    Hutten S; Kehlenbach RH
    Mol Cell Biol; 2006 Sep; 26(18):6772-85. PubMed ID: 16943420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CXCL7 promotes proliferation and invasion of cholangiocarcinoma cells.
    Guo Q; Jian Z; Jia B; Chang L
    Oncol Rep; 2017 Feb; 37(2):1114-1122. PubMed ID: 27959418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.