These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28882299)

  • 1. Single-molecule imaging of Tau dynamics on the microtubule surface.
    Stern JL; Lessard DV; Ali R; Berger CL
    Methods Cell Biol; 2017; 141():135-154. PubMed ID: 28882299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying Tau-Microtubule Interaction Using Single-Molecule TIRF Microscopy.
    Stoppin-Mellet V; Bagdadi N; Saoudi Y; Arnal I
    Methods Mol Biol; 2020; 2101():77-91. PubMed ID: 31879899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons.
    Janning D; Igaev M; Sündermann F; Brühmann J; Beutel O; Heinisch JJ; Bakota L; Piehler J; Junge W; Brandt R
    Mol Biol Cell; 2014 Nov; 25(22):3541-51. PubMed ID: 25165145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical decoration of stabilized-microtubules by Tau-proteins.
    Hervy J; Bicout DJ
    Sci Rep; 2019 Aug; 9(1):12473. PubMed ID: 31462746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent tubulin binding and polymerization by the proline-rich region of Tau is regulated by Tau's N-terminal domain.
    McKibben KM; Rhoades E
    J Biol Chem; 2019 Dec; 294(50):19381-19394. PubMed ID: 31699899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effect of phosphorylation and substrate modulation on tau's ability to promote microtubule growth and nucleation.
    Brandt R; Lee G; Teplow DB; Shalloway D; Abdel-Ghany M
    J Biol Chem; 1994 Apr; 269(16):11776-82. PubMed ID: 8163474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Tau-promoted microtubule assembly as probed by NMR spectroscopy.
    Gigant B; Landrieu I; Fauquant C; Barbier P; Huvent I; Wieruszeski JM; Knossow M; Lippens G
    J Am Chem Soc; 2014 Sep; 136(36):12615-23. PubMed ID: 25162583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoregulation of Tau modulates inhibition of kinesin-1 motility.
    Stern JL; Lessard DV; Hoeprich GJ; Morfini GA; Berger CL
    Mol Biol Cell; 2017 Apr; 28(8):1079-1087. PubMed ID: 28251926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional role for intrinsic disorder in the tau-tubulin complex.
    Melo AM; Coraor J; Alpha-Cobb G; Elbaum-Garfinkle S; Nath A; Rhoades E
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14336-14341. PubMed ID: 27911791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Characterization of Tau in Fuzzy Tau:Tubulin Complexes.
    Fung HYJ; McKibben KM; Ramirez J; Gupta K; Rhoades E
    Structure; 2020 Mar; 28(3):378-384.e4. PubMed ID: 31995742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tau protein diffuses along the microtubule lattice.
    Hinrichs MH; Jalal A; Brenner B; Mandelkow E; Kumar S; Scholz T
    J Biol Chem; 2012 Nov; 287(46):38559-68. PubMed ID: 23019339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubule-associated protein tau promotes neuronal class II β-tubulin microtubule formation and axon elongation in embryonic Xenopus laevis.
    Liu Y; Wang C; Destin G; Szaro BG
    Eur J Neurosci; 2015 May; 41(10):1263-75. PubMed ID: 25656701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A TIRF microscopy assay to decode how tau regulates EB's tracking at microtubule ends.
    Ramirez-Rios S; Serre L; Stoppin-Mellet V; Prezel E; Vinit A; Courriol E; Fourest-Lieuvin A; Delaroche J; Denarier E; Arnal I
    Methods Cell Biol; 2017; 141():179-197. PubMed ID: 28882301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau.
    Panda D; Goode BL; Feinstein SC; Wilson L
    Biochemistry; 1995 Sep; 34(35):11117-27. PubMed ID: 7669769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro.
    Brandt R; Lee G
    J Biol Chem; 1993 Feb; 268(5):3414-9. PubMed ID: 8429017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential regulation of dynein and kinesin motor proteins by tau.
    Dixit R; Ross JL; Goldman YE; Holzbaur EL
    Science; 2008 Feb; 319(5866):1086-9. PubMed ID: 18202255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons.
    Stoothoff WH; Bacskai BJ; Hyman BT
    J Biomed Opt; 2008; 13(6):064039. PubMed ID: 19123685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Annexins A2 and A6 interact with the extreme N terminus of tau and thereby contribute to tau's axonal localization.
    Gauthier-Kemper A; Suárez Alonso M; Sündermann F; Niewidok B; Fernandez MP; Bakota L; Heinisch JJ; Brandt R
    J Biol Chem; 2018 May; 293(21):8065-8076. PubMed ID: 29636414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered tubulin assembly dynamics with N-homocysteinylated human 4R/1N tau in vitro.
    Karima O; Riazi G; Khodadadi S; Aryapour H; Khalili MA; Yousefi L; Moosavi-Movahedi AA
    FEBS Lett; 2012 Nov; 586(21):3914-9. PubMed ID: 23041345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules.
    Trinczek B; Biernat J; Baumann K; Mandelkow EM; Mandelkow E
    Mol Biol Cell; 1995 Dec; 6(12):1887-902. PubMed ID: 8590813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.