These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Three- and four-repeat tau regulate the dynamic instability of two distinct microtubule subpopulations in qualitatively different manners. Implications for neurodegeneration. Levy SF; Leboeuf AC; Massie MR; Jordan MA; Wilson L; Feinstein SC J Biol Chem; 2005 Apr; 280(14):13520-8. PubMed ID: 15671021 [TBL] [Abstract][Full Text] [Related]
24. Tau phosphorylation at serine 396 and serine 404 by human recombinant tau protein kinase II inhibits tau's ability to promote microtubule assembly. Evans DB; Rank KB; Bhattacharya K; Thomsen DR; Gurney ME; Sharma SK J Biol Chem; 2000 Aug; 275(32):24977-83. PubMed ID: 10818091 [TBL] [Abstract][Full Text] [Related]
26. Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells. Breuzard G; Hubert P; Nouar R; De Bessa T; Devred F; Barbier P; Sturgis JN; Peyrot V J Cell Sci; 2013 Jul; 126(Pt 13):2810-9. PubMed ID: 23659998 [TBL] [Abstract][Full Text] [Related]
27. Tau Interaction with Tubulin and Microtubules: From Purified Proteins to Cells. De Bessa T; Breuzard G; Allegro D; Devred F; Peyrot V; Barbier P Methods Mol Biol; 2017; 1523():61-85. PubMed ID: 27975244 [TBL] [Abstract][Full Text] [Related]
28. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules. Cho JH; Johnson GV J Neurochem; 2004 Jan; 88(2):349-58. PubMed ID: 14690523 [TBL] [Abstract][Full Text] [Related]
29. Quantitative analysis of tau-microtubule interaction using FRET. Di Maïo IL; Barbier P; Allegro D; Brault C; Peyrot V Int J Mol Sci; 2014 Aug; 15(8):14697-714. PubMed ID: 25196605 [TBL] [Abstract][Full Text] [Related]
30. Tuning microtubule-based transport through filamentous MAPs: the problem of dynein. Vershinin M; Xu J; Razafsky DS; King SJ; Gross SP Traffic; 2008 Jun; 9(6):882-92. PubMed ID: 18373727 [TBL] [Abstract][Full Text] [Related]
31. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles. Prezel E; Elie A; Delaroche J; Stoppin-Mellet V; Bosc C; Serre L; Fourest-Lieuvin A; Andrieux A; Vantard M; Arnal I Mol Biol Cell; 2018 Jan; 29(2):154-165. PubMed ID: 29167379 [TBL] [Abstract][Full Text] [Related]
32. Differential association of tau with subsets of microtubules containing posttranslationally-modified tubulin variants in neuroblastoma cells. Saragoni L; Hernández P; Maccioni RB Neurochem Res; 2000 Jan; 25(1):59-70. PubMed ID: 10685605 [TBL] [Abstract][Full Text] [Related]
33. Synchrotron small-angle X-ray scattering and electron microscopy characterization of structures and forces in microtubule/Tau mixtures. Chung PJ; Song C; Miller HP; Li Y; Raviv U; Choi MC; Wilson L; Feinstein SC; Safinya CR Methods Cell Biol; 2017; 141():155-178. PubMed ID: 28882300 [TBL] [Abstract][Full Text] [Related]
34. The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport. McVicker DP; Chrin LR; Berger CL J Biol Chem; 2011 Dec; 286(50):42873-80. PubMed ID: 22039058 [TBL] [Abstract][Full Text] [Related]
35. Tau induces ring and microtubule formation from alphabeta-tubulin dimers under nonassembly conditions. Devred F; Barbier P; Douillard S; Monasterio O; Andreu JM; Peyrot V Biochemistry; 2004 Aug; 43(32):10520-31. PubMed ID: 15301550 [TBL] [Abstract][Full Text] [Related]
36. Presence of a carboxy-terminal pseudorepeat and disease-like pseudohyperphosphorylation critically influence tau's interaction with microtubules in axon-like processes. Niewidok B; Igaev M; Sündermann F; Janning D; Bakota L; Brandt R Mol Biol Cell; 2016 Nov; 27(22):3537-3549. PubMed ID: 27582388 [TBL] [Abstract][Full Text] [Related]
37. Interactions between Tau and Different Conformations of Tubulin: Implications for Tau Function and Mechanism. Duan AR; Jonasson EM; Alberico EO; Li C; Scripture JP; Miller RA; Alber MS; Goodson HV J Mol Biol; 2017 May; 429(9):1424-1438. PubMed ID: 28322917 [TBL] [Abstract][Full Text] [Related]
38. Phosphorylation of the overlooked tyrosine 310 regulates the structure, aggregation, and microtubule- and lipid-binding properties of Tau. Ait-Bouziad N; Chiki A; Limorenko G; Xiao S; Eliezer D; Lashuel HA J Biol Chem; 2020 Jun; 295(23):7905-7922. PubMed ID: 32341125 [TBL] [Abstract][Full Text] [Related]
39. Tau forms oligomeric complexes on microtubules that are distinct from tau aggregates. Gyparaki MT; Arab A; Sorokina EM; Santiago-Ruiz AN; Bohrer CH; Xiao J; Lakadamyali M Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33952699 [TBL] [Abstract][Full Text] [Related]
40. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. Goode BL; Feinstein SC J Cell Biol; 1994 Mar; 124(5):769-82. PubMed ID: 8120098 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]