These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1012 related articles for article (PubMed ID: 28882369)
1. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Castilho M; Rodrigues J; Pires I; Gouveia B; Pereira M; Moseke C; Groll J; Ewald A; Vorndran E Biofabrication; 2015 Jan; 7(1):015004. PubMed ID: 25562119 [TBL] [Abstract][Full Text] [Related]
3. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Khojasteh A; Fahimipour F; Eslaminejad MB; Jafarian M; Jahangir S; Bastami F; Tahriri M; Karkhaneh A; Tayebi L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():780-8. PubMed ID: 27612772 [TBL] [Abstract][Full Text] [Related]
4. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051 [TBL] [Abstract][Full Text] [Related]
5. Effects of VEGF loading on scaffold-confined vascularization. Lindhorst D; Tavassol F; von See C; Schumann P; Laschke MW; Harder Y; Bormann KH; Essig H; Kokemüller H; Kampmann A; Voss A; Mülhaupt R; Menger MD; Gellrich NC; Rücker M J Biomed Mater Res A; 2010 Dec; 95(3):783-92. PubMed ID: 20725981 [TBL] [Abstract][Full Text] [Related]
6. Manufacture of β-TCP/alginate scaffolds through a Fab@home model for application in bone tissue engineering. Diogo GS; Gaspar VM; Serra IR; Fradique R; Correia IJ Biofabrication; 2014 Jun; 6(2):025001. PubMed ID: 24657988 [TBL] [Abstract][Full Text] [Related]
7. In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration. Boga JC; Miguel SP; de Melo-Diogo D; Mendonça AG; Louro RO; Correia IJ Colloids Surf B Biointerfaces; 2018 May; 165():207-218. PubMed ID: 29486449 [TBL] [Abstract][Full Text] [Related]
8. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related]
9. Bone regeneration using a freeze-dried 3D gradient-structured scaffold incorporating OIC-A006-loaded PLGA microspheres based on β-TCP/PLGA. Lin L; Gao H; Dong Y J Mater Sci Mater Med; 2015 Jan; 26(1):5327. PubMed ID: 25577209 [TBL] [Abstract][Full Text] [Related]
10. Bayer EA; Jordan J; Roy A; Gottardi R; Fedorchak MV; Kumta PN; Little SR Tissue Eng Part A; 2017 Dec; 23(23-24):1382-1393. PubMed ID: 28537482 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of VEGF-Mediated Angiogenesis by 2-N,6-O-Sulfated Chitosan-Coated Hierarchical PLGA Scaffolds. Yu Y; Chen J; Chen R; Cao L; Tang W; Lin D; Wang J; Liu C ACS Appl Mater Interfaces; 2015 May; 7(18):9982-90. PubMed ID: 25905780 [TBL] [Abstract][Full Text] [Related]
12. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair. Quinlan E; López-Noriega A; Thompson EM; Hibbitts A; Cryan SA; O'Brien FJ J Tissue Eng Regen Med; 2017 Apr; 11(4):1097-1109. PubMed ID: 25783558 [TBL] [Abstract][Full Text] [Related]
13. 3D Printing of Bone-Mimetic Scaffold Composed of Gelatin/β-Tri-Calcium Phosphate for Bone Tissue Engineering. Jeong JE; Park SY; Shin JY; Seok JM; Byun JH; Oh SH; Kim WD; Lee JH; Park WH; Park SA Macromol Biosci; 2020 Dec; 20(12):e2000256. PubMed ID: 33164317 [TBL] [Abstract][Full Text] [Related]
14. Bone morphogenetic protein-2 loaded poly(D,L-lactide-co-glycolide) microspheres enhance osteogenic potential of gelatin/hydroxyapatite/β-tricalcium phosphate cryogel composite for alveolar ridge augmentation. Chang HC; Yang C; Feng F; Lin FH; Wang CH; Chang PC J Formos Med Assoc; 2017 Dec; 116(12):973-981. PubMed ID: 28256366 [TBL] [Abstract][Full Text] [Related]
15. Engineering vascularized soft tissue flaps in an animal model using human adipose-derived stem cells and VEGF+PLGA/PEG microspheres on a collagen-chitosan scaffold with a flow-through vascular pedicle. Zhang Q; Hubenak J; Iyyanki T; Alred E; Turza KC; Davis G; Chang EI; Branch-Brooks CD; Beahm EK; Butler CE Biomaterials; 2015 Dec; 73():198-213. PubMed ID: 26410787 [TBL] [Abstract][Full Text] [Related]
16. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres. Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152 [TBL] [Abstract][Full Text] [Related]
17. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering. Wang P; Song Y; Weir MD; Sun J; Zhao L; Simon CG; Xu HH Dent Mater; 2016 Feb; 32(2):252-63. PubMed ID: 26743965 [TBL] [Abstract][Full Text] [Related]
18. Vascular endothelial growth factor release from alginate microspheres under simulated physiological compressive loading and the effect on human vascular endothelial cells. Li Q; Hou T; Zhao J; Xu J Tissue Eng Part A; 2011 Jul; 17(13-14):1777-85. PubMed ID: 21341993 [TBL] [Abstract][Full Text] [Related]
19. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Cao H; Kuboyama N Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045 [TBL] [Abstract][Full Text] [Related]
20. Reconstructing Critical-Sized Mandibular Defects in a Rabbit Model: Enhancing Angiogenesis and Facilitating Bone Regeneration via a Cell-Loaded 3D-Printed Hydrogel-Ceramic Scaffold Application. Sajad Daneshi S; Tayebi L; Talaei-Khozani T; Tavanafar S; Hadaegh AH; Rasoulianboroujeni M; Rastegari B; Asadi-Yousefabad SL; Nammian P; Zare S; Mussin NM; Kaliyev AA; Zhelisbayeva KR; Tanideh N; Tamadon A ACS Biomater Sci Eng; 2024 May; 10(5):3316-3330. PubMed ID: 38619014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]