BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1010 related articles for article (PubMed ID: 28882369)

  • 21. Reconstructing Critical-Sized Mandibular Defects in a Rabbit Model: Enhancing Angiogenesis and Facilitating Bone Regeneration via a Cell-Loaded 3D-Printed Hydrogel-Ceramic Scaffold Application.
    Sajad Daneshi S; Tayebi L; Talaei-Khozani T; Tavanafar S; Hadaegh AH; Rasoulianboroujeni M; Rastegari B; Asadi-Yousefabad SL; Nammian P; Zare S; Mussin NM; Kaliyev AA; Zhelisbayeva KR; Tanideh N; Tamadon A
    ACS Biomater Sci Eng; 2024 May; 10(5):3316-3330. PubMed ID: 38619014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation.
    Deng Y; Jiang C; Li C; Li T; Peng M; Wang J; Dai K
    Sci Rep; 2017 Jul; 7(1):5588. PubMed ID: 28717129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL
    J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head.
    Zhang HX; Zhang XP; Xiao GY; Hou Y; Cheng L; Si M; Wang SS; Li YH; Nie L
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():298-307. PubMed ID: 26706534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering.
    Qi X; Ye J; Wang Y
    J Biomed Mater Res A; 2009 Jun; 89(4):980-7. PubMed ID: 18470921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chondrogenesis from human placenta-derived mesenchymal stem cells in three-dimensional scaffolds for cartilage tissue engineering.
    Hsu SH; Huang TB; Cheng SJ; Weng SY; Tsai CL; Tseng CS; Chen DC; Liu TY; Fu KY; Yen BL
    Tissue Eng Part A; 2011 Jun; 17(11-12):1549-60. PubMed ID: 21284540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of vascularized tissue-engineered bone models using triaxial bioprinting.
    Zhang J; Suttapreyasri S; Leethanakul C; Samruajbenjakun B
    J Biomed Mater Res A; 2024 Jul; 112(7):1093-1106. PubMed ID: 38411369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue-engineered Maxillofacial Skeletal Defect Reconstruction by 3D Printed Beta-tricalcium phosphate Scaffold Tethered with Growth Factors and Fibrin Glue Implanted Autologous Bone Marrow-Derived Mesenchymal Stem Cells.
    Nair MA; Shaik KV; Kokkiligadda A; Gorrela H
    J Med Life; 2020; 13(3):418-425. PubMed ID: 33072218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and characterization of gelatin/α-TCP/SF biocomposite scaffold for bone tissue regeneration.
    Huh J; Lee J; Kim W; Yeo M; Kim G
    Int J Biol Macromol; 2018 Apr; 110():488-496. PubMed ID: 28917939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermogelling bioadhesive scaffolds for intervertebral disk tissue engineering: preliminary in vitro comparison of aldehyde-based versus alginate microparticle-mediated adhesion.
    Wiltsey C; Christiani T; Williams J; Scaramazza J; Van Sciver C; Toomer K; Sheehan J; Branda A; Nitzl A; England E; Kadlowec J; Iftode C; Vernengo J
    Acta Biomater; 2015 Apr; 16():71-80. PubMed ID: 25641647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TCP/PLGA composite scaffold loaded rapamycin in situ enhances lumbar fusion by regulating osteoblast and osteoclast activity.
    Liu H; Zhu H; Cheng L; Zhao Y; Chen X; Li J; Xv X; Xiao Z; Li W; Pan J; Zhang Q; Zeng C; Guo J; Xie D; Cai D
    J Tissue Eng Regen Med; 2021 May; 15(5):475-486. PubMed ID: 33686790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as porogen.
    Tang G; Zhang H; Zhao Y; Zhang Y; Li X; Yuan X
    J Biomater Sci Polym Ed; 2012; 23(17):2241-57. PubMed ID: 22137329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate.
    Bizenjima T; Takeuchi T; Seshima F; Saito A
    Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering.
    Bastami F; Paknejad Z; Jafari M; Salehi M; Rezai Rad M; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():481-491. PubMed ID: 28024612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release.
    Gharibshahian M; Salehi M; Kamalabadi-Farahani M; Alizadeh M
    Int J Biol Macromol; 2024 May; 266(Pt 1):130995. PubMed ID: 38521323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Allogenic chondrocyte/osteoblast-loaded β-tricalcium phosphate bioceramic scaffolds for articular cartilage defect treatment.
    Wu S; Kai Z; Wang D; Tao L; Zhang P; Wang D; Liu D; Sun S; Zhong J
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1570-1576. PubMed ID: 31007085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of a three-dimensional printed gelatin/sodium alginate/nano-attapulgite composite polymer scaffold loaded with leonurine hydrochloride and its effects on osteogenesis and vascularization.
    Tan Y; Fan S; Wu X; Liu M; Dai T; Liu C; Ni S; Wang J; Yuan X; Zhao H; Weng Y
    Int J Biol Macromol; 2023 Sep; 249():126028. PubMed ID: 37506787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 51.