These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 28882895)
1. Peptide array-based screening reveals a large number of proteins interacting with the ankyrin-repeat domain of the zDHHC17 Lemonidis K; MacLeod R; Baillie GS; Chamberlain LH J Biol Chem; 2017 Oct; 292(42):17190-17202. PubMed ID: 28882895 [TBL] [Abstract][Full Text] [Related]
2. Identification of a Novel Sequence Motif Recognized by the Ankyrin Repeat Domain of zDHHC17/13 S-Acyltransferases. Lemonidis K; Sanchez-Perez MC; Chamberlain LH J Biol Chem; 2015 Sep; 290(36):21939-50. PubMed ID: 26198635 [TBL] [Abstract][Full Text] [Related]
3. S-acylation of Sprouty and SPRED proteins by the S-acyltransferase zDHHC17 involves a novel mode of enzyme-substrate interaction. Butler L; Locatelli C; Allagioti D; Lousa I; Lemonidis K; Tomkinson NCO; Salaun C; Chamberlain LH J Biol Chem; 2023 Jan; 299(1):102754. PubMed ID: 36442513 [TBL] [Abstract][Full Text] [Related]
4. The Golgi S-acylation machinery comprises zDHHC enzymes with major differences in substrate affinity and S-acylation activity. Lemonidis K; Gorleku OA; Sanchez-Perez MC; Grefen C; Chamberlain LH Mol Biol Cell; 2014 Dec; 25(24):3870-83. PubMed ID: 25253725 [TBL] [Abstract][Full Text] [Related]
5. The linker domain of the SNARE protein SNAP25 acts as a flexible molecular spacer that ensures efficient S-acylation. Salaun C; Greaves J; Tomkinson NCO; Chamberlain LH J Biol Chem; 2020 May; 295(21):7501-7515. PubMed ID: 32317281 [No Abstract] [Full Text] [Related]
6. Substrate selectivity in the zDHHC family of Lemonidis K; Salaun C; Kouskou M; Diez-Ardanuy C; Chamberlain LH; Greaves J Biochem Soc Trans; 2017 Jun; 45(3):751-758. PubMed ID: 28620036 [TBL] [Abstract][Full Text] [Related]
7. Structural Basis for Substrate Recognition by the Ankyrin Repeat Domain of Human DHHC17 Palmitoyltransferase. Verardi R; Kim JS; Ghirlando R; Banerjee A Structure; 2017 Sep; 25(9):1337-1347.e6. PubMed ID: 28757145 [TBL] [Abstract][Full Text] [Related]
8. Identification of binding sites in Huntingtin for the Huntingtin Interacting Proteins HIP14 and HIP14L. Sanders SS; Mui KK; Sutton LM; Hayden MR PLoS One; 2014; 9(2):e90669. PubMed ID: 24651384 [TBL] [Abstract][Full Text] [Related]
10. Identification of key features required for efficient S-acylation and plasma membrane targeting of sprouty-2. Locatelli C; Lemonidis K; Salaun C; Tomkinson NCO; Chamberlain LH J Cell Sci; 2020 Nov; 133(21):. PubMed ID: 33037124 [TBL] [Abstract][Full Text] [Related]
11. The palmitoyl acyltransferase HIP14 shares a high proportion of interactors with huntingtin: implications for a role in the pathogenesis of Huntington's disease. Butland SL; Sanders SS; Schmidt ME; Riechers SP; Lin DT; Martin DD; Vaid K; Graham RK; Singaraja RR; Wanker EE; Conibear E; Hayden MR Hum Mol Genet; 2014 Aug; 23(15):4142-60. PubMed ID: 24705354 [TBL] [Abstract][Full Text] [Related]
12. The ankyrin repeat domain of Huntingtin interacting protein 14 contains a surface aromatic cage, a potential site for methyl-lysine binding. Gao T; Collins RE; Horton JR; Zhang X; Zhang R; Dhayalan A; Tamas R; Jeltsch A; Cheng X Proteins; 2009 Aug; 76(3):772-7. PubMed ID: 19434754 [No Abstract] [Full Text] [Related]
13. Hip14l-deficient mice develop neuropathological and behavioural features of Huntington disease. Sutton LM; Sanders SS; Butland SL; Singaraja RR; Franciosi S; Southwell AL; Doty CN; Schmidt ME; Mui KK; Kovalik V; Young FB; Zhang W; Hayden MR Hum Mol Genet; 2013 Feb; 22(3):452-65. PubMed ID: 23077216 [TBL] [Abstract][Full Text] [Related]
14. The ZDHHC13/ZDHHC17 subfamily: From biological functions to therapeutic targets of diseases. Zhang Y; Fan S; He L; Li L Pharmacol Res; 2024 Nov; 209():107418. PubMed ID: 39306022 [TBL] [Abstract][Full Text] [Related]
16. Prediction of a new surface binding pocket and evaluation of inhibitors against huntingtin interacting protein 14: an insight using docking studies. Gupta S; Misra G; Pant MC; Seth PK J Mol Model; 2011 Dec; 17(12):3047-56. PubMed ID: 21360185 [TBL] [Abstract][Full Text] [Related]
17. Screening for PTB domain binding partners and ligand specificity using proteome-derived NPXY peptide arrays. Smith MJ; Hardy WR; Murphy JM; Jones N; Pawson T Mol Cell Biol; 2006 Nov; 26(22):8461-74. PubMed ID: 16982700 [TBL] [Abstract][Full Text] [Related]
18. Huntingtin interacting proteins 14 and 14-like are required for chorioallantoic fusion during early placental development. Sanders SS; Hou J; Sutton LM; Garside VC; Mui KK; Singaraja RR; Hayden MR; Hoodless PA Dev Biol; 2015 Jan; 397(2):257-66. PubMed ID: 25478910 [TBL] [Abstract][Full Text] [Related]
19. Ankyrin-B is lipid-modified by Gupta JP; Jenkins PM Front Physiol; 2023; 14():959660. PubMed ID: 37064897 [TBL] [Abstract][Full Text] [Related]
20. A charged prominence in the linker domain of the cysteine-string protein CspĪ± mediates its regulated interaction with the calcium sensor synaptotagmin 9 during exocytosis. Boal F; Laguerre M; Milochau A; Lang J; Scotti PA FASEB J; 2011 Jan; 25(1):132-43. PubMed ID: 20847230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]