These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28883360)

  • 1. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO₃ and ZnO Charge Transport Buffer Layers.
    Hori T; Moritou H; Fukuoka N; Sakamoto J; Fujii A; Ozaki M
    Materials (Basel); 2010 Nov; 3(11):4915-4921. PubMed ID: 28883360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent Vapor Treatment Effects on Poly(3-hexylthiophene) Thin Films and its Application for Interpenetrating Heterojunction Organic Solar Cells.
    Hori T; Kittichungchit V; Moritou H; Kubo H; Fujii A; Ozaki M
    Materials (Basel); 2010 Nov; 3(11):4939-4949. PubMed ID: 28883362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of thin n-type metal-oxide interlayers in inverted organic solar cells.
    Gadisa A; Liu Y; Samulski ET; Lopez R
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3846-51. PubMed ID: 22834558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Engineering Importance of Bilayered ZnO Cathode Buffer on the Photovoltaic Performance of Inverted Organic Solar Cells.
    Ambade RB; Ambade SB; Mane RS; Lee SH
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7951-60. PubMed ID: 25804557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy.
    Kuwabara T; Kawahara Y; Yamaguchi T; Takahashi K
    ACS Appl Mater Interfaces; 2009 Oct; 1(10):2107-10. PubMed ID: 20355841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thickness dependence of the MoO(3) blocking layers on ZnO nanorod-inverted organic photovoltaic devices.
    Wang M; Li Y; Huang H; Peterson ED; Nie W; Zhou W; Zeng W; Huang W; Fang G; Sun N; Zhao X; Carroll DL
    Appl Phys Lett; 2011 Mar; 98(10):103305. PubMed ID: 21464889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced open-circuit voltages and efficiencies: the role of oxidation state of molybdenum oxide buffer layer in polymer solar cells.
    Ma P; Xu J; Wang C; Wang C; Meng F; Xie Y; Wen S
    RSC Adv; 2021 Oct; 11(56):35141-35146. PubMed ID: 35493160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design considerations for electrode buffer layer materials in polymer solar cells.
    Bilby D; Frieberg B; Kramadhati S; Green P; Kim J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14964-74. PubMed ID: 25116039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance enhancement in inverted solar cells by interfacial modification of ZnO nanoparticle buffer layer.
    Ambade SB; Ambade RB; Kim S; Park H; Yoo DJ; Leel SH
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8561-6. PubMed ID: 25958563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyethylenimine Interfacial Layers in Inverted Organic Photovoltaic Devices: Effects of Ethoxylation and Molecular Weight on Efficiency and Temporal Stability.
    Courtright BA; Jenekhe SA
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26167-75. PubMed ID: 26550983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of the organic/inorganic interface on the organic-inorganic hybrid solar cells.
    Ichikawa T; Shiratori S
    J Nanosci Nanotechnol; 2012 May; 12(5):3725-31. PubMed ID: 22852300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of Interfacial Modifiers in Inorganic Titania/Organic Poly(3-hexylthiophene) Heterojunction Hybrid Solar Cells.
    Pirashanthan A; Kajana T; Velauthapillai D; Shivatharsiny Y; Bentouba S; Ravirajan P
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced performance in inverted polymer solar cells with D-π-A-type molecular dye incorporated on ZnO buffer layer.
    Song CE; Ryu KY; Hong SJ; Bathula C; Lee SK; Shin WS; Lee JC; Choi SK; Kim JH; Moon SJ
    ChemSusChem; 2013 Aug; 6(8):1445-54. PubMed ID: 23897708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syntheses, Charge Separation, and Inverted Bulk Heterojunction Solar Cell Application of Phenothiazine-Fullerene Dyads.
    Blanco GD; Hiltunen AJ; Lim GN; KC CB; Kaunisto KM; Vuorinen TK; Nesterov VN; Lemmetyinen HJ; D'Souza F
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8481-90. PubMed ID: 26990247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Inverted Organic Solar Cells Based on a Fullerene Derivative-Modified Transparent Cathode.
    Wang Y; Cong H; Yu B; Zhang Z; Zhan X
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28891990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-processable zinc oxide for the polymer solar cell based on P3HT:PCBM.
    Kim JY; Noh S; Lee D; Nayak PK; Hong Y; Lee C
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5995-6000. PubMed ID: 22121646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of nanostructured ZnO film as a hole-conducting layer of organic photovoltaic cell.
    Kim H; Kwon Y; Choe Y
    Nanoscale Res Lett; 2013 May; 8(1):240. PubMed ID: 23680100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells.
    Lee KH; Kumar B; Park HJ; Kim SW
    Nanoscale Res Lett; 2010 Aug; 5(12):1908-12. PubMed ID: 21170411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy Level Tuning of Non-Fullerene Acceptors in Organic Solar Cells.
    Cnops K; Zango G; Genoe J; Heremans P; Martinez-Diaz MV; Torres T; Cheyns D
    J Am Chem Soc; 2015 Jul; 137(28):8991-7. PubMed ID: 26104833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of solution-processed niO thin film as a hole transport layer in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction solar cells.
    Jung J; Oh SH; Yoon DH; Kim HJ
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1165-9. PubMed ID: 22629913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.