These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28883391)

  • 21. CMOS-Compatible Antimony-Doped Germanium Epilayers for Mid-Infrared Low-Loss High-Plasma-Frequency Plasmonics.
    Chong H; Xu Z; Wang Z; Yu J; Biesner T; Dressel M; Wu L; Li Q; Ye H
    ACS Appl Mater Interfaces; 2019 May; 11(21):19647-19653. PubMed ID: 31055915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directional radiation and photothermal effect enhanced control of 2D excitonic emission based on germanium nanoparticles.
    Yan J; Yu P; Ma C; Huang Y; Yang G
    Nanotechnology; 2020 Sep; 31(38):385201. PubMed ID: 32512556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Narrowband mid-infrared thermal emitters based on the Fabry-Perot type of bound states in the continuum.
    Li X; Maqbool E; Han Z
    Opt Express; 2023 Jun; 31(12):20338-20344. PubMed ID: 37381430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic Tuning of Gap Plasmon Resonances Using a Solid-State Electrochromic Device.
    Li Y; van de Groep J; Talin AA; Brongersma ML
    Nano Lett; 2019 Nov; 19(11):7988-7995. PubMed ID: 31560552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GaAs Mid-IR Electrically Tunable Metasurfaces.
    Chae HU; Shrewsbury B; Ahsan R; Povinelli ML; Kapadia R
    Nano Lett; 2024 Feb; 24(8):2581-2588. PubMed ID: 38349389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lattice Mie resonances and emissivity enhancement in mid-infrared iron pyrite metasurfaces.
    Islam MS; Babicheva VE
    Opt Express; 2023 Nov; 31(24):40380-40392. PubMed ID: 38041341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes.
    Chiu KC; Falk AL; Ho PH; Farmer DB; Tulevski G; Lee YH; Avouris P; Han SJ
    Nano Lett; 2017 Sep; 17(9):5641-5645. PubMed ID: 28763225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purcell effect for active tuning of light scattering from semiconductor optical antennas.
    Holsteen AL; Raza S; Fan P; Kik PG; Brongersma ML
    Science; 2017 Dec; 358(6369):1407-1410. PubMed ID: 29242341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic Control of Nanocavities with Tunable Metal Oxides.
    Kim J; Carnemolla EG; DeVault C; Shaltout AM; Faccio D; Shalaev VM; Kildishev AV; Ferrera M; Boltasseva A
    Nano Lett; 2018 Feb; 18(2):740-746. PubMed ID: 29283583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix.
    Taliercio T; Guilengui VN; Cerutti L; Rodriguez JB; Barho F; Rodrigo MJ; Gonzalez-Posada F; Tournié E; Niehle M; Trampert A
    Opt Express; 2015 Nov; 23(23):29423-33. PubMed ID: 26698426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable Mid IR focusing in InAs based semiconductor Hyperbolic Metamaterial.
    Desouky M; Mahmoud AM; Swillam MA
    Sci Rep; 2017 Nov; 7(1):15312. PubMed ID: 29127383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films.
    Liu M; Xia S; Wan W; Qin J; Li H; Zhao C; Bi L; Qiu CW
    Nat Mater; 2023 Oct; 22(10):1196-1202. PubMed ID: 37592027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. General properties of dielectric optical antennas.
    Schuller JA; Brongersma ML
    Opt Express; 2009 Dec; 17(26):24084-95. PubMed ID: 20052120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-Area, Highly Crystalline DNA-Assembled Metasurfaces Exhibiting Widely Tunable Epsilon-Near-Zero Behavior.
    Zheng CY; Hadibrata W; Kim S; Schatz GC; Aydin K; Mirkin CA
    ACS Nano; 2021 Nov; 15(11):18289-18296. PubMed ID: 34705417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-dielectric-metal plasmonic resonators for active beam steering in the infrared.
    Battal E; Okyay AK
    Opt Lett; 2013 Mar; 38(6):983-5. PubMed ID: 23503281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Negative Refraction in Time-Varying Strongly Coupled Plasmonic-Antenna-Epsilon-Near-Zero Systems.
    Bruno V; DeVault C; Vezzoli S; Kudyshev Z; Huq T; Mignuzzi S; Jacassi A; Saha S; Shah YD; Maier SA; Cumming DRS; Boltasseva A; Ferrera M; Clerici M; Faccio D; Sapienza R; Shalaev VM
    Phys Rev Lett; 2020 Jan; 124(4):043902. PubMed ID: 32058792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced optical tuning of modified-geometry resonators clad in blue phase liquid crystals.
    Ptasinski J; Khoo IC; Fainman Y
    Opt Lett; 2014 Sep; 39(18):5435-8. PubMed ID: 26466291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers.
    Park J; Kang JH; Liu X; Brongersma ML
    Sci Rep; 2015 Nov; 5():15754. PubMed ID: 26549615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Infrared Resonance Tuning of Nanoslit Antennas with Phase-Change Materials.
    Conrads L; Heßler A; Völkel L; Wilden K; Strauch A; Pries J; Wuttig M; Taubner T
    ACS Nano; 2023 Dec; 17(24):25721-25730. PubMed ID: 38085927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.
    Giannini V; Berrier A; Maier SA; Sánchez-Gil JA; Rivas JG
    Opt Express; 2010 Feb; 18(3):2797-807. PubMed ID: 20174108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.