BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28883429)

  • 1. A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging.
    Rong G; Kim EH; Poskanzer KE; Clark HA
    Sci Rep; 2017 Sep; 7(1):10819. PubMed ID: 28883429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode.
    Xie X; Zhai J; Crespo GA; Bakker E
    Anal Chem; 2014 Sep; 86(17):8770-5. PubMed ID: 25117492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer-free optode nanosensors for dynamic, reversible, and ratiometric sodium imaging in the physiological range.
    Ruckh TT; Mehta AA; Dubach JM; Clark HA
    Sci Rep; 2013 Nov; 3():3366. PubMed ID: 24284431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments.
    Zhang M; Søndergaard RV; Kumar EK; Henriksen JR; Cui D; Hammershøj P; Clausen MH; Andresen TL
    Analyst; 2015 Nov; 140(21):7246-53. PubMed ID: 26393332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle-based optical sensing of intracellular ions at the example of calcium - what are the experimental pitfalls?
    Kantner K; Ashraf S; Carregal-Romero S; Carrillo-Carrion C; Collot M; Del Pino P; Heimbrodt W; De Aberasturi DJ; Kaiser U; Kazakova LI; Lelle M; de Baroja NM; Montenegro JM; Nazarenus M; Pelaz B; Peneva K; Gil PR; Sabir N; Schneider LM; Shabarchina LI; Sukhorukov GB; Vazquez M; Yang F; Parak WJ
    Small; 2015 Feb; 11(8):896-904. PubMed ID: 25504784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells.
    Park EJ; Brasuel M; Behrend C; Philbert MA; Kopelman R
    Anal Chem; 2003 Aug; 75(15):3784-91. PubMed ID: 14572044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion-Switchable Quantum Dot Förster Resonance Energy Transfer Rates in Ratiometric Potassium Sensors.
    Ruckh TT; Skipwith CG; Chang W; Senko AW; Bulovic V; Anikeeva PO; Clark HA
    ACS Nano; 2016 Apr; 10(4):4020-30. PubMed ID: 27089024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quadruply-labeled serum albumin as a biodegradable nanosensor for simultaneous fluorescence imaging of intracellular pH values, oxygen and temperature.
    Zhang XA; Zhang W; Wang Q; Wang J; Ren G; Wang XD
    Mikrochim Acta; 2019 Jul; 186(8):584. PubMed ID: 31363852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye-sensitized upconversion nanocomposites for ratiometric semi-quantitative detection of hypochlorite in vivo.
    Zou X; Zhou X; Cao C; Lu W; Yuan W; Liu Q; Feng W; Li F
    Nanoscale; 2019 Feb; 11(6):2959-2965. PubMed ID: 30693936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescent PEBBLE nanosensor for intracellular free zinc.
    Sumner JP; Aylott JW; Monson E; Kopelman R
    Analyst; 2002 Jan; 127(1):11-6. PubMed ID: 11827375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria-Targeted Ratiometric Fluorescent Nanosensor for Simultaneous Biosensing and Imaging of O
    Huang H; Dong F; Tian Y
    Anal Chem; 2016 Dec; 88(24):12294-12302. PubMed ID: 28193035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging Sodium Flux during Action Potentials in Neurons with Fluorescent Nanosensors and Transparent Microelectrodes.
    Rong G; Kim EH; Qiang Y; Di W; Zhong Y; Zhao X; Fang H; Clark HA
    ACS Sens; 2018 Dec; 3(12):2499-2505. PubMed ID: 30358986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A lysosome-targeting nanosensor for simultaneous fluorometric imaging of intracellular pH values and temperature.
    Zhang W; Abou El-Reash YG; Ding L; Lin Z; Lian Y; Song B; Yuan J; Wang XD
    Mikrochim Acta; 2018 Nov; 185(12):533. PubMed ID: 30402697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH.
    Chen J; Tang Y; Wang H; Zhang P; Li Y; Jiang J
    J Colloid Interface Sci; 2016 Dec; 484():298-307. PubMed ID: 27632075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of Aptamers for Metabolite Sensing and Construction of Optical Nanosensors.
    Long Y; Pfeiffer F; Mayer G; Schrøder TD; Özalp VC; Olsen LF
    Methods Mol Biol; 2016; 1380():3-19. PubMed ID: 26552812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Probes for Neurobiological Sensing and Imaging.
    Kim EH; Chin G; Rong G; Poskanzer KE; Clark HA
    Acc Chem Res; 2018 May; 51(5):1023-1032. PubMed ID: 29652127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the design of fluorescent ratiometric nanosensors.
    Doussineau T; Schulz A; Lapresta-Fernandez A; Moro A; Körsten S; Trupp S; Mohr GJ
    Chemistry; 2010 Sep; 16(34):10290-9. PubMed ID: 20665579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle PEBBLE sensors for quantitative nanomolar imaging of intracellular free calcium ions.
    Si D; Epstein T; Lee YE; Kopelman R
    Anal Chem; 2012 Jan; 84(2):978-86. PubMed ID: 22122409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Developments in Nanosensors for Imaging Applications in Biological Systems.
    Rong G; Tuttle EE; Neal Reilly A; Clark HA
    Annu Rev Anal Chem (Palo Alto Calif); 2019 Jun; 12(1):109-128. PubMed ID: 30857408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LipiSensors: Exploiting Lipid Nanoemulsions to Fabricate Ionophore-Based Nanosensors.
    Dailey AL; Greer MD; Sodia TZ; Jewell MP; Kalin TA; Cash KJ
    Biosensors (Basel); 2020 Sep; 10(9):. PubMed ID: 32927619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.