These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28883505)

  • 1. Channel Formation and Membrane Deformation via Sterol-Aided Polymorphism of Amphidinol 3.
    Iwamoto M; Sumino A; Shimada E; Kinoshita M; Matsumori N; Oiki S
    Sci Rep; 2017 Sep; 7(1):10782. PubMed ID: 28883505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and stereospecific interaction of amphidinol 3 with sterol in lipid bilayers.
    Espiritu RA; Matsumori N; Tsuda M; Murata M
    Biochemistry; 2014 May; 53(20):3287-93. PubMed ID: 24773476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterol effect on interaction between amphidinol 3 and liposomal membrane as evidenced by surface plasmon resonance.
    Swasono RT; Mouri R; Morsy N; Matsumori N; Oishi T; Murata M
    Bioorg Med Chem Lett; 2010 Apr; 20(7):2215-8. PubMed ID: 20207137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of 6-F-ergosterol and its influence on membrane-permeabilization of amphotericin B and amphidinol 3.
    Kasai Y; Matsumori N; Ueno H; Nonomura K; Yano S; Michio M; Oishi T
    Org Biomol Chem; 2011 Mar; 9(5):1437-42. PubMed ID: 21221461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Truncated derivatives of amphidinol 3 reveal the functional role of polyol chain in sterol-recognition and pore formation.
    Matsumori N; Hieda M; Morito M; Wakamiya Y; Oishi T
    Bioorg Med Chem Lett; 2024 Jan; 98():129594. PubMed ID: 38104905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amphidinol 3 preferentially binds to cholesterol in disordered domains and disrupts membrane phase separation.
    Hieda M; Sorada A; Kinoshita M; Matsumori N
    Biochem Biophys Rep; 2021 Jul; 26():100941. PubMed ID: 33614998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-permeabilizing activities of amphidinol 3, polyene-polyhydroxy antifungal from a marine dinoflagellate.
    Houdai T; Matsuoka S; Matsumori N; Murata M
    Biochim Biophys Acta; 2004 Nov; 1667(1):91-100. PubMed ID: 15533309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How do sterols determine the antifungal activity of amphotericin B? Free energy of binding between the drug and its membrane targets.
    Neumann A; Baginski M; Czub J
    J Am Chem Soc; 2010 Dec; 132(51):18266-72. PubMed ID: 21126070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of membrane-bound amphidinol 3 in isotropic small bicelles.
    Houdai T; Matsumori N; Murata M
    Org Lett; 2008 Oct; 10(19):4191-4. PubMed ID: 18767855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confirmation of the absolute configuration at C45 of amphidinol 3.
    Manabe Y; Ebine M; Matsumori N; Murata M; Oishi T
    J Nat Prod; 2012 Nov; 75(11):2003-6. PubMed ID: 23130992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total Synthesis of Amphidinol 3: A General Strategy for Synthesizing Amphidinol Analogues and Structure-Activity Relationship Study.
    Wakamiya Y; Ebine M; Matsumori N; Oishi T
    J Am Chem Soc; 2020 Feb; 142(7):3472-3478. PubMed ID: 31986250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and structure revision of the C43-C67 part of amphidinol 3.
    Ebine M; Kanemoto M; Manabe Y; Konno Y; Sakai K; Matsumori N; Murata M; Oishi T
    Org Lett; 2013 Jun; 15(11):2846-9. PubMed ID: 23692417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-angle neutron scattering studies of the effects of amphotericin B on phospholipid and phospholipid-sterol membrane structure.
    Foglia F; Drake AF; Terry AE; Rogers SE; Lawrence MJ; Barlow DJ
    Biochim Biophys Acta; 2011 Jun; 1808(6):1574-80. PubMed ID: 21334304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the possibility of the amphotericin B-sterol complex formation in cholesterol- and ergosterol-containing lipid bilayers: a molecular dynamics study.
    Neumann A; Czub J; Baginski M
    J Phys Chem B; 2009 Dec; 113(48):15875-85. PubMed ID: 19929013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane permeabilizing action of amphidinol 3 and theonellamide A in raft-forming lipid mixtures.
    Espiritu RA
    Z Naturforsch C J Biosci; 2017 Jan; 72(1-2):43-48. PubMed ID: 27159918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models of beta-amyloid ion channels in the membrane suggest that channel formation in the bilayer is a dynamic process.
    Jang H; Zheng J; Nussinov R
    Biophys J; 2007 Sep; 93(6):1938-49. PubMed ID: 17526580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ergosterol on the fungal membrane properties. All-atom and coarse-grained molecular dynamics study.
    Ermakova E; Zuev Y
    Chem Phys Lipids; 2017 Dec; 209():45-53. PubMed ID: 29122611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Stereochemical Revision of the C31-C67 Fragment of Amphidinol 3.
    Wakamiya Y; Ebine M; Murayama M; Omizu H; Matsumori N; Murata M; Oishi T
    Angew Chem Int Ed Engl; 2018 May; 57(21):6060-6064. PubMed ID: 29635773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of integral protein in membrane permeabilization by amphidinols.
    Morsy N; Konoki K; Houdai T; Matsumori N; Oishi T; Murata M; Aimoto S
    Biochim Biophys Acta; 2008 Jun; 1778(6):1453-9. PubMed ID: 18291091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study.
    Lin WC; Blanchette CD; Ratto TV; Longo ML
    Biophys J; 2006 Jan; 90(1):228-37. PubMed ID: 16214871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.