BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28883550)

  • 1. Electrokinetically driven continuous-flow enrichment of colloidal particles by Joule heating induced temperature gradient focusing in a convergent-divergent microfluidic structure.
    Zhao C; Ge Z; Song Y; Yang C
    Sci Rep; 2017 Sep; 7(1):10803. PubMed ID: 28883550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel.
    Ge Z; Wang W; Yang C
    Anal Chim Acta; 2015 Feb; 858():91-7. PubMed ID: 25597807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating.
    Ge Z; Wang W; Yang C
    Lab Chip; 2011 Apr; 11(7):1396-402. PubMed ID: 21331425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joule heating effects on reservoir-based dielectrophoresis.
    Kale A; Patel S; Qian S; Hu G; Xuan X
    Electrophoresis; 2014 Mar; 35(5):721-7. PubMed ID: 24165865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
    Kale A; Song L; Lu X; Yu L; Hu G; Xuan X
    Electrophoresis; 2018 Mar; 39(5-6):887-896. PubMed ID: 29068080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
    Sridharan S; Zhu J; Hu G; Xuan X
    Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling the characterization of the nonlinear electrokinetic properties of particles using low voltage.
    de Los Santos-Ramirez JM; Mendiola-Escobedo CA; Cotera-Sarabia JM; Gallo-Villanueva RC; Martinez-Duarte R; Perez-Gonzalez VH
    Analyst; 2024 Jun; ():. PubMed ID: 38855835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications.
    Xuan X
    Electrophoresis; 2019 Sep; 40(18-19):2484-2513. PubMed ID: 30816561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling of the Joule heating effect on electrokinetic flow focusing.
    Huang KD; Yang RJ
    Electrophoresis; 2006 May; 27(10):1957-66. PubMed ID: 16619299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects.
    Xuan X
    Electrophoresis; 2022 Jan; 43(1-2):167-189. PubMed ID: 33991344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips.
    Gui L; Ren CL
    Langmuir; 2008 Mar; 24(6):2938-46. PubMed ID: 18257592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joule heating effects on electroosmotic entry flow.
    Prabhakaran RA; Zhou Y; Patel S; Kale A; Song Y; Hu G; Xuan X
    Electrophoresis; 2017 Mar; 38(5):572-579. PubMed ID: 27557612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous-flow trapping and localized enrichment of micro- and nano-particles using induced-charge electrokinetics.
    Zhao C; Yang C
    Soft Matter; 2018 Feb; 14(6):1056-1066. PubMed ID: 29335710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear electrokinetic effects in insulator-based dielectrophoretic systems.
    Wang Q; Dingari NN; Buie CR
    Electrophoresis; 2017 Oct; 38(20):2576-2586. PubMed ID: 28763135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and numerical analysis of temperature gradient focusing via Joule heating.
    Sommer GJ; Kim SM; Littrell RJ; Hasselbrink EF
    Lab Chip; 2007 Jul; 7(7):898-907. PubMed ID: 17594010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis.
    Li M; Li S; Li W; Wen W; Alici G
    Electrophoresis; 2013 Apr; 34(7):952-60. PubMed ID: 23436345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of Nano- and Microparticle Flows Using Thermophoresis in Branched Microfluidic Channels.
    Tsuji T; Matsumoto Y; Kugimiya R; Doi K; Kawano S
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31083630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.