BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28883551)

  • 1. Shape-based separation of microalga Euglena gracilis using inertial microfluidics.
    Li M; Muñoz HE; Goda K; Di Carlo D
    Sci Rep; 2017 Sep; 7(1):10802. PubMed ID: 28883551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial focusing of ellipsoidal Euglena gracilis cells in a stepped microchannel.
    Li M; Muñoz HE; Schmidt A; Guo B; Lei C; Goda K; Di Carlo D
    Lab Chip; 2016 Nov; 16(22):4458-4465. PubMed ID: 27766329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple Isolation of Single Cell: Thin Glass Microfluidic Device for Observation of Isolated Single Euglena gracilis Cells.
    Ota N; Yalikun Y; Tanaka N; Shen Y; Aishan Y; Nagahama Y; Oikawa M; Tanaka Y
    Anal Sci; 2019 May; 35(5):577-583. PubMed ID: 30686796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-based sorting of hydrogel droplets using inertial microfluidics.
    Li M; van Zee M; Goda K; Di Carlo D
    Lab Chip; 2018 Aug; 18(17):2575-2582. PubMed ID: 30046787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous scalable blood filtration device using inertial microfluidics.
    Mach AJ; Di Carlo D
    Biotechnol Bioeng; 2010 Oct; 107(2):302-11. PubMed ID: 20589838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X; Liedert C; Liedert R; Papautsky I
    Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-based separation of drug-treated
    Zhang T; Liu H; Okano K; Tang T; Inoue K; Yamazaki Y; Kamikubo H; Cain AK; Tanaka Y; Inglis DW; Hosokawa Y; Yaxiaer Y; Li M
    Lab Chip; 2022 Jul; 22(15):2801-2809. PubMed ID: 35642562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.
    Guo B; Lei C; Ito T; Jiang Y; Ozeki Y; Goda K
    PLoS One; 2016; 11(11):e0166214. PubMed ID: 27846239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Triplet Parallelizing Spiral Microfluidic Chip for Continuous Separation of Tumor Cells.
    Chen H
    Sci Rep; 2018 Mar; 8(1):4042. PubMed ID: 29511230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finding of phytase: Understanding growth promotion mechanism of phytic acid to freshwater microalga Euglena gracilis.
    Zhu J; Wakisaka M
    Bioresour Technol; 2020 Jan; 296():122343. PubMed ID: 31711907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional optical feedback control of Euglena confined in closed-type microfluidic channels.
    Ozasa K; Lee J; Song S; Hara M; Maeda M
    Lab Chip; 2011 Jun; 11(11):1933-40. PubMed ID: 21491041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of tumor sera on cell shape and photosynthesis of Euglena gracilis.
    Ruppel HG; Benninghoff B
    Z Naturforsch C Biosci; 1983; 38(9-10):763-9. PubMed ID: 6139924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of biomass yield and lipid accumulation of freshwater microalga Euglena gracilis by phenolic compounds from basic structures of lignin.
    Zhu J; Tan X; Hafid HS; Wakisaka M
    Bioresour Technol; 2021 Feb; 321():124441. PubMed ID: 33268047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation and Enrichment of Yeast
    Liu P; Liu H; Yuan D; Jang D; Yan S; Li M
    Anal Chem; 2021 Jan; 93(3):1586-1595. PubMed ID: 33289547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaled-Up Inertial Microfluidics: Retention System for Microcarrier-Based Suspension Cultures.
    Moloudi R; Oh S; Yang C; Teo KL; Lam AT; Ebrahimi Warkiani M; Win Naing M
    Biotechnol J; 2019 May; 14(5):e1800674. PubMed ID: 30791214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of two lignocellulose related sugar alcohols on the growth and metabolites biosynthesis of Euglena gracilis.
    Zhu J; Wakisaka M
    Bioresour Technol; 2020 May; 303():122950. PubMed ID: 32045866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production.
    Ogawa T; Tamoi M; Kimura A; Mine A; Sakuyama H; Yoshida E; Maruta T; Suzuki K; Ishikawa T; Shigeoka S
    Biotechnol Biofuels; 2015; 8():80. PubMed ID: 26056534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence factors of channel geometry for separation of circulating tumor cells by four-ring inertial focusing microchannel.
    Liu D; Chen S; Luo X
    Cell Biochem Funct; 2023 Apr; 41(3):375-388. PubMed ID: 36951265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.