These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28883662)

  • 41. Contact-line friction of liquid drops on self-assembled monolayers: chain-length effects.
    Voué M; Rioboo R; Adao MH; Conti J; Bondar AI; Ivanov DA; Blake TD; De Coninck J
    Langmuir; 2007 Apr; 23(9):4695-9. PubMed ID: 17388611
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of air and water vapor environments on the hydrophobicity of surfaces.
    Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP
    J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental investigation of the link between static and dynamic wetting by forced wetting of nylon filament.
    Vega MJ; Gouttière C; Seveno D; Blake TD; Voué M; De Coninck J; Clarke A
    Langmuir; 2007 Oct; 23(21):10628-34. PubMed ID: 17867713
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spreading and receding of oil droplets on silanized glass surfaces in water: Role of three-phase contact line flow direction in spontaneous displacement.
    Li R; Lu Y; Manica R
    J Colloid Interface Sci; 2021 Apr; 587():672-682. PubMed ID: 33220951
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Droplet spreading driven by van der Waals force: a molecular dynamics study.
    Wu C; Qian T; Sheng P
    J Phys Condens Matter; 2010 Aug; 22(32):325101. PubMed ID: 21386483
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wetting behavior during impacting bituminous coal surface for dust suppression droplets of fatty alcohol polyoxyethylene ether.
    Han F; Zhao Y; Liu M; Hu F; Peng Y; Ma L
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):51816-51829. PubMed ID: 36813941
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Moving contact lines and Langevin formalism.
    Fernández-Toledano JC; Blake TD; De Coninck J
    J Colloid Interface Sci; 2020 Mar; 562():287-292. PubMed ID: 31841888
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of surface charge on wetting kinetics.
    Puah LS; Sedev R; Fornasiero D; Ralston J; Blake T
    Langmuir; 2010 Nov; 26(22):17218-24. PubMed ID: 20945854
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A molecular dynamics study of the motion of a nanodroplet of pure liquid on a wetting gradient.
    Halverson JD; Maldarelli C; Couzis A; Koplik J
    J Chem Phys; 2008 Oct; 129(16):164708. PubMed ID: 19045299
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser.
    Zhang D; Chen F; Yang Q; Yong J; Bian H; Ou Y; Si J; Meng X; Hou X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4905-12. PubMed ID: 22909564
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces.
    Baek S; Moon HS; Kim W; Jeon S; Yong K
    Nanoscale; 2018 Sep; 10(37):17842-17851. PubMed ID: 30221273
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic wetting at the nanoscale.
    Nakamura Y; Carlson A; Amberg G; Shiomi J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033010. PubMed ID: 24125347
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic Contact Angles and Mechanisms of Motion of Water Droplets Moving on Nanopillared Superhydrophobic Surfaces: A Molecular Dynamics Simulation Study.
    Li H; Yan T; Fichthorn KA; Yu S
    Langmuir; 2018 Aug; 34(34):9917-9926. PubMed ID: 30059231
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sonoprocessing of wetting of SiC by liquid Al: A thermodynamic and kinetic study.
    Li W; Liang Y; Li B; Feng J
    Ultrason Sonochem; 2022 Aug; 88():106092. PubMed ID: 35878510
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic Spreading of Droplets on Lyophilic Micropillar-Arrayed Surfaces.
    Zong D; Yang Z; Duan Y
    Langmuir; 2018 Apr; 34(14):4417-4425. PubMed ID: 29547295
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the quasi-static relaxation of a drop in a combined model of dissipation.
    Iliev S; Pesheva N
    Langmuir; 2006 Feb; 22(4):1580-5. PubMed ID: 16460077
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular Dynamics Study on Wettability of Poly(vinylidene fluoride) Crystalline and Amorphous Surfaces.
    Kitabata M; Taddese T; Okazaki S
    Langmuir; 2018 Oct; 34(40):12214-12223. PubMed ID: 30188736
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic behavior of water droplet impact on microtextured surfaces: the effect of geometrical parameters on anisotropic wetting and the maximum spreading diameter.
    Li X; Mao L; Ma X
    Langmuir; 2013 Jan; 29(4):1129-38. PubMed ID: 23265312
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Water drop friction on superhydrophobic surfaces.
    Olin P; Lindström SB; Pettersson T; Wågberg L
    Langmuir; 2013 Jul; 29(29):9079-89. PubMed ID: 23721176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.