These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28883790)

  • 1. Impedance Control for Robotic Rehabilitation: A Robust Markovian Approach.
    Jutinico AL; Jaimes JC; Escalante FM; Perez-Ibarra JC; Terra MH; Siqueira AAG
    Front Neurorobot; 2017; 11():43. PubMed ID: 28883790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H
    Zhang P; Hu J; Zhang H; Chen D
    ISA Trans; 2020 Jun; 101():10-22. PubMed ID: 32008731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-Disturbance Sliding Mode Control of a Novel Variable Stiffness Actuator for the Rehabilitation of Neurologically Disabled Patients.
    Mo L; Feng P; Shao Y; Shi D; Ju L; Zhang W; Ding X
    Front Robot AI; 2022; 9():864684. PubMed ID: 35585837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Interaction Control of Compliant Robots Using Impedance Learning.
    Sun T; Yang J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer.
    Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A
    ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum.
    Ghannadi B; Sharif Razavian R; McPhee J
    Front Robot AI; 2018; 5():124. PubMed ID: 33501003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hysteresis modeling and compensation of a rotary series elastic actuator with nonlinear stiffness.
    Zhou L; Chen W; Chen W; Bai S; Zhao Z; Wang J; Yu H
    Rev Sci Instrum; 2021 Sep; 92(9):095005. PubMed ID: 34598513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel compact compliant actuator design for rehabilitation robots.
    Yu H; Huang S; Thakor NV; Chen G; Toh SL; Sta Cruz M; Ghorbel Y; Zhu C
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650478. PubMed ID: 24187295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repetitive Impedance Learning-Based Physically Human-Robot Interactive Control.
    Sun T; Yang J; Pan Y; Yu H
    IEEE Trans Neural Netw Learn Syst; 2024 Aug; 35(8):10629-10638. PubMed ID: 37027552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear time delay estimation based model reference adaptive impedance control for an upper-limb human-robot interaction.
    Omrani J; Moghaddam MM
    Proc Inst Mech Eng H; 2022 Mar; 236(3):385-398. PubMed ID: 34720012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passivity of Series Elastic Actuation Under Model Reference Force Control During Null Impedance Rendering.
    Kenanoglu CU; Patoglu V
    IEEE Trans Haptics; 2022; 15(1):51-56. PubMed ID: 34982694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation.
    Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation.
    Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M
    Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel compliant actuator for wearable robotics applications.
    Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Robust Impedance Controller Design for Series Elastic Actuators using the Singular Perturbation Theory.
    Kim D; Koh K; Cho GR; Zhang LQ
    IEEE ASME Trans Mechatron; 2020 Feb; 25(1):164-174. PubMed ID: 32431485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-Time Interactive Control of Robots with Multiple Interaction Modes.
    Yang J; Sun T
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive variable impedance position/force tracking control of fracture reduction robot.
    Zheng G; Lei J; Hu L; Zhang L
    Int J Med Robot; 2023 Apr; 19(2):e2469. PubMed ID: 36302164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Control of a Series-Parallel Elastic Actuator for a Weight-Bearing Exoskeleton Robot.
    Wang T; Zheng T; Zhao S; Sui D; Zhao J; Zhu Y
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active Impedance Control of Bioinspired Motion Robotic Manipulators: An Overview.
    Al-Shuka HFN; Leonhardt S; Zhu WH; Song R; Ding C; Li Y
    Appl Bionics Biomech; 2018; 2018():8203054. PubMed ID: 30420899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.