These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 28883826)
1. Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule. Butt H; Eid A; Ali Z; Atia MAM; Mokhtar MM; Hassan N; Lee CM; Bao G; Mahfouz MM Front Plant Sci; 2017; 8():1441. PubMed ID: 28883826 [TBL] [Abstract][Full Text] [Related]
2. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. Shams F; Bayat H; Mohammadian O; Mahboudi S; Vahidnezhad H; Soosanabadi M; Rahimpour A Bioimpacts; 2022; 12(4):371-391. PubMed ID: 35975201 [No Abstract] [Full Text] [Related]
3. Predictable NHEJ Insertion and Assessment of HDR Editing Strategies in Plants. Molla KA; Shih J; Wheatley MS; Yang Y Front Genome Ed; 2022; 4():825236. PubMed ID: 35481279 [TBL] [Abstract][Full Text] [Related]
4. Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Ali Z; Shami A; Sedeek K; Kamel R; Alhabsi A; Tehseen M; Hassan N; Butt H; Kababji A; Hamdan SM; Mahfouz MM Commun Biol; 2020 Jan; 3(1):44. PubMed ID: 31974493 [TBL] [Abstract][Full Text] [Related]
5. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Zhang WW; Matlashewski G mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745 [TBL] [Abstract][Full Text] [Related]
6. Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice. Li S; Li J; Zhang J; Du W; Fu J; Sutar S; Zhao Y; Xia L J Exp Bot; 2018 Sep; 69(20):4715-4721. PubMed ID: 29955893 [TBL] [Abstract][Full Text] [Related]
7. Employing template-directed CRISPR-based editing of the Zafar K; Khan MZ; Amin I; Mukhtar Z; Zafar M; Mansoor S AoB Plants; 2023 Feb; 15(2):plac059. PubMed ID: 36873055 [TBL] [Abstract][Full Text] [Related]
8. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Boel A; De Saffel H; Steyaert W; Callewaert B; De Paepe A; Coucke PJ; Willaert A Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355591 [TBL] [Abstract][Full Text] [Related]
10. Gene Editing With TALEN and CRISPR/Cas in Rice. Bi H; Yang B Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502 [TBL] [Abstract][Full Text] [Related]
11. Savić N; Ringnalda FC; Berk C; Bargsten K; Hall J; Jinek M; Schwank G Bio Protoc; 2019 Jan; 9(1):. PubMed ID: 30675496 [TBL] [Abstract][Full Text] [Related]
16. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123 [TBL] [Abstract][Full Text] [Related]
17. CRISPR/Cas9; A robust technology for producing genetically engineered plants. Farooq R; Hussain K; Nazir S; Javed MR; Masood N Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631 [TBL] [Abstract][Full Text] [Related]
18. Comparison of CRISPR/Cas9 and TALENs on editing an integrated EGFP gene in the genome of HEK293FT cells. He Z; Proudfoot C; Whitelaw CB; Lillico SG Springerplus; 2016; 5(1):814. PubMed ID: 27390654 [TBL] [Abstract][Full Text] [Related]
19. Short-Homology-Mediated CRISPR/Cas9-Based Method for Genome Editing in Fission Yeast. Hayashi A; Tanaka K G3 (Bethesda); 2019 Apr; 9(4):1153-1163. PubMed ID: 30755408 [TBL] [Abstract][Full Text] [Related]
20. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52. Shao S; Ren C; Liu Z; Bai Y; Chen Z; Wei Z; Wang X; Zhang Z; Xu K Int J Biochem Cell Biol; 2017 Nov; 92():43-52. PubMed ID: 28928041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]