These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28884056)

  • 1. The effect of the electrical double layer on hydrodynamic lubrication: a non-monotonic trend with increasing zeta potential.
    Jing D; Pan Y; Wang X
    Beilstein J Nanotechnol; 2017; 8():1515-1522. PubMed ID: 28884056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroviscous effect on fluid drag in a microchannel with large zeta potential.
    Jing D; Bhushan B
    Beilstein J Nanotechnol; 2015; 6():2207-16. PubMed ID: 26734512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of electrical double layer on electric conductivity and pressure drop in a pressure-driven microchannel flow.
    Ban H; Lin B; Song Z
    Biomicrofluidics; 2010 Feb; 4(1):14104. PubMed ID: 20644673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters.
    Chanda S; Sinha S; Das S
    Soft Matter; 2014 Oct; 10(38):7558-68. PubMed ID: 25112236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electroviscous force between charged particles: beyond the thin-double-layer approximation.
    Chun B; Ladd AJ
    J Colloid Interface Sci; 2004 Jun; 274(2):687-94. PubMed ID: 15144845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements.
    Das S; Chakraborty S
    Langmuir; 2010 Jul; 26(13):11589-96. PubMed ID: 20476752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers.
    Das S; Guha A; Mitra SK
    Anal Chim Acta; 2013 Dec; 804():159-66. PubMed ID: 24267077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximizing the Lubricant Film Thickness Between a Rigid Microtextured and a Smooth Deformable Surface in Relative Motion, Using a Soft Elasto-Hydrodynamic Lubrication Model.
    Allen Q; Raeymaekers B
    J Tribol; 2020 Jul; 142(7):071802. PubMed ID: 34168394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general Poisson-Boltzmann model with position-dependent dielectric permittivity for electric double layer analysis.
    Le G; Zhang J
    Langmuir; 2011 May; 27(9):5366-70. PubMed ID: 21476554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knee model of hydrodynamic lubrication during the gait cycle and the influence of prosthetic joint conformity.
    Pascau A; Guardia B; Puertolas JA; Gómez-Barrena E
    J Orthop Sci; 2009 Jan; 14(1):68-75. PubMed ID: 19214691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Electrical Double-Layer Interaction between a Spherical Particle and a Cylinder.
    Gu Y
    J Colloid Interface Sci; 2000 Nov; 231(1):199-203. PubMed ID: 11082267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Molecular Interface and Boundary Problems in an Electrical Double Layer and Electroosmotic Flow.
    Masuduzzaman M; Kim B
    Langmuir; 2022 Jun; 38(23):7244-7255. PubMed ID: 35622400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of wear of bearing surfaces on elastohydrodynamic lubrication of metal-on-metal hip implants.
    Liu F; Jin ZM; Hirt F; Rieker C; Roberts P; Grigoris P
    Proc Inst Mech Eng H; 2005 Sep; 219(5):319-28. PubMed ID: 16225148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical analysis of electrokinetic flow and heat transfer in a microchannel under asymmetric boundary conditions.
    Soong CY; Wang SH
    J Colloid Interface Sci; 2003 Sep; 265(1):202-13. PubMed ID: 12927184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow behavior of periodical electroosmosis in microchannel for biochips.
    Wang X; Wu J
    J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Load-Induced Hydrodynamic Lubrication of Porous Films.
    Khosla T; Cremaldi J; Erickson JS; Pesika NS
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17587-91. PubMed ID: 26223011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillating laminar electrokinetic flow in infinitely extended circular microchannels.
    Bhattacharyya A; Masliyah JH; Yang J
    J Colloid Interface Sci; 2003 May; 261(1):12-20. PubMed ID: 12725819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of the tribological performance of micro-dimple textured surfaces under hydrodynamic lubrication.
    Li K; Jing D; Hu J; Ding X; Yao Z
    Beilstein J Nanotechnol; 2017; 8():2324-2338. PubMed ID: 29181289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic characteristics of high-speed gasoline engine turbocharger based on thermo-elasto-hydrodynamic lubrication bearing model and flexible multibody dynamics method.
    Gu CS; Yuan ZC; Yang ZR; Liu JX; Li HL
    Sci Prog; 2020; 103(1):36850419897712. PubMed ID: 31893980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.
    Tripathi D; Yadav A; Anwar Bég O; Kumar R
    Microvasc Res; 2018 May; 117():28-36. PubMed ID: 29305878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.