BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28884171)

  • 1. Model-guided identification of novel gene amplification targets for improving succinate production in Escherichia coli NZN111.
    Jian X; Li N; Chen Q; Hua Q
    Integr Biol (Camb); 2017 Oct; 9(10):830-835. PubMed ID: 28884171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase.
    Eikmanns BJ
    J Bacteriol; 1992 Oct; 174(19):6076-86. PubMed ID: 1400158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico deletion of PtsG gene in Escherichia coli genome-scale model predicts increased succinate production from glycerol.
    Mienda BS; Shamsir MS
    J Biomol Struct Dyn; 2015; 33(11):2380-9. PubMed ID: 25921851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico identification of gene amplification targets based on analysis of production and growth coupling.
    Jian X; Zhou S; Zhang C; Hua Q
    Biosystems; 2016 Jul; 145():1-8. PubMed ID: 27157785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased incorporation of gaseous CO
    Park S; Lee JU; Cho S; Kim H; Oh HB; Pack SP; Lee J
    J Biotechnol; 2017 Jan; 241():101-107. PubMed ID: 27908774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hyperthermophilic bacterium Thermotoga neapolitana possesses two isozymes of the 3-phosphoglycerate kinase/triosephosphate isomerase fusion protein.
    Yu JS; Noll KM
    FEMS Microbiol Lett; 1995 Sep; 131(3):307-12. PubMed ID: 7557342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering.
    Yu JH; Zhu LW; Xia ST; Li HM; Tang YL; Liang XH; Chen T; Tang YJ
    Biotechnol Bioeng; 2016 Jul; 113(7):1531-41. PubMed ID: 26724788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions.
    Yang J; Wang Z; Zhu N; Wang B; Chen T; Zhao X
    Microbiol Res; 2014; 169(5-6):432-40. PubMed ID: 24103861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli genome-scale metabolic gene knockout of lactate dehydrogenase (ldhA), increases succinate production from glycerol.
    Mienda BS
    J Biomol Struct Dyn; 2018 Nov; 36(14):3680-3686. PubMed ID: 29057718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production.
    Tan Z; Zhu X; Chen J; Li Q; Zhang X
    Appl Environ Microbiol; 2013 Aug; 79(16):4838-44. PubMed ID: 23747698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of adaptive laboratory evolution to overcome a flux limitation in an Escherichia coli production strain.
    Tokuyama K; Toya Y; Horinouchi T; Furusawa C; Matsuda F; Shimizu H
    Biotechnol Bioeng; 2018 Jun; 115(6):1542-1551. PubMed ID: 29457640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the acetyl-CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production in Escherichia coli.
    Lin H; Vadali RV; Bennett GN; San KY
    Biotechnol Prog; 2004; 20(5):1599-604. PubMed ID: 15458351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering glyceraldehyde-3-phosphate dehydrogenase for switching control of glycolysis in Escherichia coli.
    Cho HS; Seo SW; Kim YM; Jung GY; Park JM
    Biotechnol Bioeng; 2012 Oct; 109(10):2612-9. PubMed ID: 22528318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GAPDH enhances group II intron splicing in vitro.
    Böck-Taferner P; Wank H
    Biol Chem; 2004 Jul; 385(7):615-21. PubMed ID: 15318810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production.
    Wang Q; Chen X; Yang Y; Zhao X
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):887-94. PubMed ID: 16927085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-guided metabolic gene knockout of gnd for enhanced succinate production in Escherichia coli from glucose and glycerol substrates.
    Mienda BS; Shamsir MS; Illias RM
    Comput Biol Chem; 2016 Apr; 61():130-7. PubMed ID: 26878126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and genetic characterization of the three metabolic routes in Thermococcus kodakarensis linking glyceraldehyde 3-phosphate and 3-phosphoglycerate.
    Matsubara K; Yokooji Y; Atomi H; Imanaka T
    Mol Microbiol; 2011 Sep; 81(5):1300-12. PubMed ID: 21736643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic pathway engineering for the non-growth-associated succinate production in Escherichia coli based on flux solution space.
    Toya Y; Shimizu H
    J Biosci Bioeng; 2022 Jul; 134(1):29-33. PubMed ID: 35545466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico profiling of cell growth and succinate production in
    Jian X; Li N; Zhang C; Hua Q
    Bioresour Bioprocess; 2016; 3(1):48. PubMed ID: 27909649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase.
    Wang W; Li Z; Xie J; Ye Q
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):737-45. PubMed ID: 19156443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.