BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28884472)

  • 1. A crustacean lobula plate: Morphology, connections, and retinotopic organization.
    Bengochea M; Berón de Astrada M; Tomsic D; Sztarker J
    J Comp Neurol; 2018 Jan; 526(1):109-119. PubMed ID: 28884472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of columnar inputs in the third optic ganglion of a highly visual crab.
    Bengochea M; Berón de Astrada M
    J Physiol Paris; 2014; 108(2-3):61-70. PubMed ID: 24929118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural organization of the third optic neuropil, the lobula, in the highly visual semiterrestrial crab Neohelice granulata.
    Lepore MG; Tomsic D; Sztarker J
    J Comp Neurol; 2022 Jul; 530(10):1533-1550. PubMed ID: 34985823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa.
    Sinakevitch I; Douglass JK; Scholtz G; Loesel R; Strausfeld NJ
    J Comp Neurol; 2003 Dec; 467(2):150-72. PubMed ID: 14595766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits.
    Douglass JK; Strausfeld NJ
    J Comp Neurol; 2003 Mar; 457(4):326-44. PubMed ID: 12561074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matched function of the neuropil processing optic flow in flies and crabs: the lobula plate mediates optomotor responses in
    Barnatan Y; Tomsic D; Cámera A; Sztarker J
    Proc Biol Sci; 2022 Aug; 289(1981):20220812. PubMed ID: 35975436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata.
    Sztarker J; Tomsic D
    J Comp Neurol; 2014 Oct; 522(14):3177-93. PubMed ID: 24659096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of optic lobes that support motion detection in a semiterrestrial crab.
    Sztarker J; Strausfeld NJ; Tomsic D
    J Comp Neurol; 2005 Dec; 493(3):396-411. PubMed ID: 16261533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies.
    Douglass JK; Strausfeld NJ
    Microsc Res Tech; 2003 Oct; 62(2):132-50. PubMed ID: 12966499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla.
    Bausenwein B; Dittrich AP; Fischbach KF
    Cell Tissue Res; 1992 Jan; 267(1):17-28. PubMed ID: 1735111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly.
    Douglass JK; Strausfeld NJ
    J Comp Neurol; 1998 Jun; 396(1):84-104. PubMed ID: 9623889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Organization of the Second Optic Chiasm of the
    Shinomiya K; Horne JA; McLin S; Wiederman M; Nern A; Plaza SM; Meinertzhagen IA
    Front Neural Circuits; 2019; 13():65. PubMed ID: 31680879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binocular Neuronal Processing of Object Motion in an Arthropod.
    Scarano F; Sztarker J; Medan V; Berón de Astrada M; Tomsic D
    J Neurosci; 2018 Aug; 38(31):6933-6948. PubMed ID: 30012687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Representation of the stomatopod's retinal midband in the optic lobes: Putative neural substrates for integrating chromatic, achromatic and polarization information.
    Thoen HH; Sayre ME; Marshall J; Strausfeld NJ
    J Comp Neurol; 2018 May; 526(7):1148-1165. PubMed ID: 29377111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual motion-detection circuits in flies: parallel direction- and non-direction-sensitive pathways between the medulla and lobula plate.
    Douglass JK; Strausfeld NJ
    J Neurosci; 1996 Aug; 16(15):4551-62. PubMed ID: 8764644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synaptic organization of visual interneurons in the lobula complex of flies. A light and electron microscopical study using silver-intensified cobalt-impregnations.
    Hausen K; Wolburg-Buchholz W; Ribi WA
    Cell Tissue Res; 1980; 208(3):371-87. PubMed ID: 6156764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pair of descending neurons with dendrites in the optic lobes projecting directly to thoracic ganglia of dipterous insects.
    Nässel DR; Strausfeld NJ
    Cell Tissue Res; 1982; 226(2):355-62. PubMed ID: 6812960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents.
    Strausfeld NJ; Okamura JY
    J Comp Neurol; 2007 Jan; 500(1):166-88. PubMed ID: 17099891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine-immunoreactive neurons in the blowfly visual system: light and electron microscopic immunocytochemistry.
    Nässel DR; Elekes K; Johansson KU
    J Chem Neuroanat; 1988; 1(6):311-25. PubMed ID: 3270359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-field neurons associated with oculomotor control in muscoid flies: cellular organization in the lobula plate.
    Strausfeld NJ; Gilbert C
    J Comp Neurol; 1992 Feb; 316(1):56-71. PubMed ID: 1573051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.