BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28884577)

  • 1. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments.
    Wang G; Um W; Wang Z; Reinoso-Maset E; Washton NM; Mueller KT; Perdrial N; O'Day PA; Chorover J
    Environ Sci Technol; 2017 Oct; 51(19):11011-11019. PubMed ID: 28884577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate controls uranium release from acidic waste-weathered Hanford sediments.
    Vázquez-Ortega A; Perdrial N; Reinoso-Maset E; Root RA; O'Day PA; Chorover J
    J Hazard Mater; 2021 Aug; 416():126240. PubMed ID: 34492991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of phosphate and silica on U(VI) precipitation from acidic and neutralized wastewaters.
    Kanematsu M; Perdrial N; Um W; Chorover J; O'Day PA
    Environ Sci Technol; 2014 Jun; 48(11):6097-106. PubMed ID: 24754743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments.
    Chang HS; Um W; Rod K; Serne RJ; Thompson A; Perdrial N; Steefel CI; Chorover J
    Environ Sci Technol; 2011 Oct; 45(19):8313-20. PubMed ID: 21859142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.
    Szecsody JE; Truex MJ; Qafoku NP; Wellman DM; Resch T; Zhong L
    J Contam Hydrol; 2013 Aug; 151():155-75. PubMed ID: 23851265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in uranium speciation through a depth sequence of contaminated Hanford sediments.
    Catalano JG; McKinley JP; Zachara JM; Heald SM; Smith SC; Brown GE
    Environ Sci Technol; 2006 Apr; 40(8):2517-24. PubMed ID: 16683586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uranium phases in contaminated sediments below Hanford's U tank farm.
    Um W; Wang Z; Serne RJ; Williams BD; Brown CF; Dodge CJ; Francis AJ
    Environ Sci Technol; 2009 Jun; 43(12):4280-6. PubMed ID: 19603635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of flow on uranium speciation in soils impacted by acidic waste fluids.
    Perdrial N; Vázquez-Ortega A; Reinoso-Maset E; O'Day PA; Chorover J
    J Environ Radioact; 2022 Oct; 251-252():106955. PubMed ID: 35772319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolved Carbonate and pH Control the Dissolution of Uranyl Phosphate Minerals in Flow-Through Porous Media.
    Reinoso-Maset E; Perdrial N; Steefel CI; Um W; Chorover J; O'Day PA
    Environ Sci Technol; 2020 May; 54(10):6031-6042. PubMed ID: 32364719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition effect of secondary phosphate mineral precipitation on uranium release from contaminated sediments.
    Shi Z; Liu C; Zachara JM; Wang Z; Deng B
    Environ Sci Technol; 2009 Nov; 43(21):8344-9. PubMed ID: 19924967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms.
    Alam MS; Cheng T
    J Contam Hydrol; 2014 Aug; 164():72-87. PubMed ID: 24954631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate-Induced Immobilization of Uranium in Hanford Sediments.
    Pan Z; Giammar DE; Mehta V; Troyer LD; Catalano JG; Wang Z
    Environ Sci Technol; 2016 Dec; 50(24):13486-13494. PubMed ID: 27993066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic and diffraction study of uranium speciation in contaminated vadose zone sediments from the Hanford site, Washington state.
    Catalano JG; Heald SM; Zachara JM; Brown GE
    Environ Sci Technol; 2004 May; 38(10):2822-8. PubMed ID: 15212255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusive release of uranium from contaminated sediments into capillary fringe pore water.
    Rod KA; Wellman DM; Flury M; Pierce EM; Harsh JB
    J Contam Hydrol; 2012 Oct; 140-141():164-72. PubMed ID: 23041367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments.
    Stewart BD; Mayes MA; Fendorf S
    Environ Sci Technol; 2010 Feb; 44(3):928-34. PubMed ID: 20058915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of clay minerals and organic matter in formulated sediments on the bioavailability of sediment-associated uranium to the freshwater midge, Chironomus dilutus.
    Crawford SE; Liber K
    Sci Total Environ; 2015 Nov; 532():821-30. PubMed ID: 26205073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolution of uranium-bearing minerals and mobilization of uranium by organic ligands in a biologically reduced sediment.
    Luo W; Gu B
    Environ Sci Technol; 2011 Apr; 45(7):2994-9. PubMed ID: 21395303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of uranium contamination in weathered fractured saprolite/shale and ground water.
    Phillips DH; Watson DB; Roh Y; Mehlhorn TL; Moon JW; Jardine PM
    J Environ Qual; 2006; 35(5):1715-30. PubMed ID: 16899743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolution of studtite [UO
    Kim J; Kim H; Kim WS; Um W
    J Environ Radioact; 2018 Sep; 189():57-66. PubMed ID: 29604494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotic dissolution of autunite under anaerobic conditions: effect of bicarbonates and Shewanella oneidensis MR1 microbial activity.
    Anagnostopoulos V; Katsenovich Y; Lee B; Lee HM
    Environ Geochem Health; 2020 Aug; 42(8):2547-2556. PubMed ID: 31858357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.