These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 28884582)
1. Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators. Fon W; Matheny MH; Li J; Krayzman L; Cross MC; D'Souza RM; Crutchfield JP; Roukes ML Nano Lett; 2017 Oct; 17(10):5977-5983. PubMed ID: 28884582 [TBL] [Abstract][Full Text] [Related]
2. Phase synchronization of two anharmonic nanomechanical oscillators. Matheny MH; Grau M; Villanueva LG; Karabalin RB; Cross MC; Roukes ML Phys Rev Lett; 2014 Jan; 112(1):014101. PubMed ID: 24483899 [TBL] [Abstract][Full Text] [Related]
3. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution. Zhuo Z; Cai SM; Tang M; Lai YC Chaos; 2018 Apr; 28(4):043119. PubMed ID: 31906645 [TBL] [Abstract][Full Text] [Related]
4. Network structure, topology, and dynamics in generalized models of synchronization. Lerman K; Ghosh R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026108. PubMed ID: 23005826 [TBL] [Abstract][Full Text] [Related]
5. Role of time scales and topology on the dynamics of complex networks. Gupta K; Ambika G Chaos; 2019 Mar; 29(3):033119. PubMed ID: 30927860 [TBL] [Abstract][Full Text] [Related]
6. Synchronization of networks of chaotic oscillators: Structural and dynamical datasets. Sevilla-Escoboza R; Buldú JM Data Brief; 2016 Jun; 7():1185-1189. PubMed ID: 27761501 [TBL] [Abstract][Full Text] [Related]
7. Growth, collapse, and self-organized criticality in complex networks. Wang Y; Fan H; Lin W; Lai YC; Wang X Sci Rep; 2016 Apr; 6():24445. PubMed ID: 27079515 [TBL] [Abstract][Full Text] [Related]
8. Exponential synchronization of complex networks of linear systems and nonlinear oscillators: a unified analysis. Qin J; Gao H; Zheng WX IEEE Trans Neural Netw Learn Syst; 2015 Mar; 26(3):510-21. PubMed ID: 25720007 [TBL] [Abstract][Full Text] [Related]
9. Photonic cavity synchronization of nanomechanical oscillators. Bagheri M; Poot M; Fan L; Marquardt F; Tang HX Phys Rev Lett; 2013 Nov; 111(21):213902. PubMed ID: 24313490 [TBL] [Abstract][Full Text] [Related]
10. Experimental datasets of networks of nonlinear oscillators: Structure and dynamics during the path to synchronization. Vera-Ávila VP; Sevilla-Escoboza R; Lozano-Sánchez AA; Rivera-Durón RR; Buldú JM Data Brief; 2020 Feb; 28():105012. PubMed ID: 31956667 [TBL] [Abstract][Full Text] [Related]
11. Functionability in complex networks: Leading nodes for the transition from structural to functional networks through remote asynchronization. Rosell-Tarragó G; Díaz-Guilera A Chaos; 2020 Jan; 30(1):013105. PubMed ID: 32013516 [TBL] [Abstract][Full Text] [Related]
12. Driven synchronization in random networks of oscillators. Hindes J; Myers CR Chaos; 2015 Jul; 25(7):073119. PubMed ID: 26232970 [TBL] [Abstract][Full Text] [Related]
13. Delayed dynamical systems: networks, chimeras and reservoir computing. Hart JD; Larger L; Murphy TE; Roy R Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2153):20180123. PubMed ID: 31329059 [TBL] [Abstract][Full Text] [Related]
14. Estimating the structure of small dynamical networks from the state time evolution of one node. Autariello R; Dzakpasu R; Sorrentino F Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012915. PubMed ID: 23410412 [TBL] [Abstract][Full Text] [Related]
15. Cluster synchronization in networked nonidentical chaotic oscillators. Wang Y; Wang L; Fan H; Wang X Chaos; 2019 Sep; 29(9):093118. PubMed ID: 31575156 [TBL] [Abstract][Full Text] [Related]
17. The role of network structure and time delay in a metapopulation Wilson--Cowan model. Conti F; Van Gorder RA J Theor Biol; 2019 Sep; 477():1-13. PubMed ID: 31181240 [TBL] [Abstract][Full Text] [Related]