BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28884596)

  • 1. 3D-map modelling for the melting points prediction of intumescent flame-retardant coatings.
    Korotkov AS; Gravit M
    SAR QSAR Environ Res; 2017 Aug; 28(8):677-689. PubMed ID: 28884596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fire propagation performance of intumescent fire protective coatings using eggshells as a novel biofiller.
    Yew MC; Ramli Sulong NH; Yew MK; Amalina MA; Johan MR
    ScientificWorldJournal; 2014; 2014():805094. PubMed ID: 25136687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formulation of intumescent flame retardant coatings containing natural-based tea saponin.
    Qian W; Li XZ; Wu ZP; Liu YX; Fang CC; Meng W
    J Agric Food Chem; 2015 Mar; 63(10):2782-8. PubMed ID: 25721245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intumescent, Epoxy-Based Flame-Retardant Coatings Based on Poly(acrylic acid) Compositions.
    Price EJ; Covello J; Tuchler A; Wnek GE
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18997-19005. PubMed ID: 32227977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene-vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends.
    Wang B; Tang Q; Hong N; Song L; Wang L; Shi Y; Hu Y
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3754-61. PubMed ID: 21859130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterisation of flame retardant encapsulated with functionalised silica-based shell.
    Hoang DT; Schorr D; Landry V; Blanchet P; Vanslambrouck S; Dagenais C
    J Microencapsul; 2018 Aug; 35(5):428-438. PubMed ID: 30189763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Copper Oxide on Epoxy Coatings with New Intumescent Polymer-Based Fire Retardant.
    Riyazuddin ; Bano S; Husain FM; Siddique JA; Alharbi KH; Khan RA; Alsalme A
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33348597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and Characterization of the Flame-Retardant Decorated Plywood Based on the Intumescent Flame Retardant Adhesive.
    Wu M; Song W; Wu Y; Qu W
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32028679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Efficiency of Biobased Carbonization Agent and Intumescent Flame Retardant on Flame Retardancy of Biopolymer Composites and Investigation of their Melt-Spinnability.
    Maqsood M; Langensiepen F; Seide G
    Molecules; 2019 Apr; 24(8):. PubMed ID: 30999658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-light polylactic acid/combination composite foam: A fully biodegradable flame retardant material.
    Jia L; Huang W; Zhao Y; Wen S; Yu Z; Zhang Z
    Int J Biol Macromol; 2022 Nov; 220():754-765. PubMed ID: 35985399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate.
    Chen X; Jiang Y; Jiao C
    J Hazard Mater; 2014 Feb; 266():114-21. PubMed ID: 24389005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Study of Fire Resistance and Anti-Ageing Properties of Intumescent Fire-Retardant Coatings Reinforced with Conch Shell Bio-Filler.
    Wang F; Liu H; Yan L; Feng Y
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Degradation Characteristic and Flame Retardancy of Polylactide-Based Nanobiocomposites.
    Malkappa K; Bandyopadhyay J; Ray SS
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30332755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion of polyphosphates into (poly(allylamine)-montmorillonite) multilayer films: flame retardant-intumescent films with improved oxygen barrier.
    Laachachi A; Ball V; Apaydin K; Toniazzo V; Ruch D
    Langmuir; 2011 Nov; 27(22):13879-87. PubMed ID: 21970541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application.
    Shao ZB; Deng C; Tan Y; Chen MJ; Chen L; Wang YZ
    ACS Appl Mater Interfaces; 2014 May; 6(10):7363-70. PubMed ID: 24742305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intumescent flame retardant-derived P,N co-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction.
    Wang Y; Zhang X; Li A; Li M
    Chem Commun (Camb); 2015 Oct; 51(79):14801-4. PubMed ID: 26300366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric.
    Chen S; Li X; Li Y; Sun J
    ACS Nano; 2015 Apr; 9(4):4070-6. PubMed ID: 25777158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets.
    Li WX; Zhang HJ; Hu XP; Yang WX; Cheng Z; Xie CQ
    J Hazard Mater; 2020 Nov; 398():123001. PubMed ID: 32768832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric.
    Leistner M; Abu-Odeh AA; Rohmer SC; Grunlan JC
    Carbohydr Polym; 2015 Oct; 130():227-32. PubMed ID: 26076621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Effect between Piperazine Pyrophosphate and Melamine Polyphosphate in Flame Retardant Coatings for Structural Steel.
    Li L; Huang Y; Tang W; Zhang Y; Qian L
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.