BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28884612)

  • 1. Conjugation with 20 kDa dextran decreases the autoxidation rate of bovine hemoglobin.
    Zhang J; Wang Y; You GX; Wang Q; Zhang S; Yu WL; Hu T; Zhao L; Zhou H
    Artif Cells Nanomed Biotechnol; 2018 Nov; 46(7):1436-1443. PubMed ID: 28884612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific cross-linking of human and bovine hemoglobins differentially alters oxygen binding and redox side reactions producing rhombic heme and heme degradation.
    Nagababu E; Ramasamy S; Rifkind JM; Jia Y; Alayash AI
    Biochemistry; 2002 Jun; 41(23):7407-15. PubMed ID: 12044174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A PEGylated bovine hemoglobin as a potent hemoglobin-based oxygen carrier.
    Wang Y; Wang L; Yu W; Gao D; You G; Li P; Zhang S; Zhang J; Hu T; Zhao L; Zhou H
    Biotechnol Prog; 2017 Jan; 33(1):252-260. PubMed ID: 27696787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen binding and oxidation reactions of human hemoglobin conjugated to carboxylate dextran.
    Jia Y; Wood F; Menu P; Faivre B; Caron A; Alayash AI
    Biochim Biophys Acta; 2004 Jun; 1672(3):164-73. PubMed ID: 15182936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive Biochemical and Biophysical Characterization of Hemoglobin-Based Oxygen Carrier Therapeutics: All HBOCs Are Not Created Equally.
    Meng F; Kassa T; Jana S; Wood F; Zhang X; Jia Y; D'Agnillo F; Alayash AI
    Bioconjug Chem; 2018 May; 29(5):1560-1575. PubMed ID: 29570272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo investigation of the novel Dex-bHb as oxygen carriers.
    Zhang J; Wang Y; Zhang S; You GX; Li PL; Wang Q; Yu WL; Hu T; Zhou H; Zhao L
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S133-S137. PubMed ID: 30618312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of beta116 His (G18) at alpha1beta1 contact sites for alphabeta assembly and autoxidation of hemoglobin.
    Adachi K; Yang Y; Lakka V; Wehrli S; Reddy KS; Surrey S
    Biochemistry; 2003 Sep; 42(34):10252-9. PubMed ID: 12939154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute.
    Cooper CE; Silkstone GGA; Simons M; Rajagopal B; Syrett N; Shaik T; Gretton S; Welbourn E; Bülow L; Eriksson NL; Ronda L; Mozzarelli A; Eke A; Mathe D; Reeder BJ
    Free Radic Biol Med; 2019 Apr; 134():106-118. PubMed ID: 30594736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoxidation of the site-specifically PEGylated hemoglobins: role of the PEG chains and the sites of PEGylation in the autoxidation.
    Hu T; Li D; Manjula BN; Acharya SA
    Biochemistry; 2008 Oct; 47(41):10981-90. PubMed ID: 18808150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acellular invertebrate hemoglobins as model therapeutic oxygen carriers: unique redox potentials.
    Harrington JP; Kobayashi S; Dorman SC; Zito SL; Hirsch RE
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(1):53-67. PubMed ID: 17364471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and redox behavior of OxyVita, a zero-linked polymeric hemoglobin: comparison with natural acellular polymeric hemoglobins.
    Harrington JP; Orlik K; Zito SL; Wollocko J; Wollocko H
    Artif Cells Blood Substit Immobil Biotechnol; 2010 Apr; 38(2):64-8. PubMed ID: 20196683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propylbenzmethylation at Val-1(α) markedly increases the tetramer stability of the PEGylated hemoglobin: a comparison with propylation at Val-1(α).
    Hu T; Li D; Wang J; Wang Q; Liang Y; Su Y; Ma G; Su Z; Wang S
    Biochim Biophys Acta; 2012 Dec; 1820(12):2044-51. PubMed ID: 23022153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidized mono-, di-, tri-, and polysaccharides as potential hemoglobin cross-linking reagents for the synthesis of high oxygen affinity artificial blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):953-62. PubMed ID: 15176904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of expression and polymerization of hemoglobin Polytaur, a potential blood substitute.
    Faggiano S; Bruno S; Ronda L; Pizzonia P; Pioselli B; Mozzarelli A
    Arch Biochem Biophys; 2011 Jan; 505(1):42-7. PubMed ID: 20920461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation and haem loss kinetics of poly(ethylene glycol)-conjugated haemoglobin (MP4): dissociation between in vitro and in vivo oxidation rates.
    Vandegriff KD; Malavalli A; Minn C; Jiang E; Lohman J; Young MA; Samaja M; Winslow RM
    Biochem J; 2006 Nov; 399(3):463-71. PubMed ID: 16813564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subunit-directed click coupling via doubly cross-linked hemoglobin efficiently produces readily purified functional bis-tetrameric oxygen carriers.
    Singh S; Dubinsky-Davidchik IS; Yang Y; Kluger R
    Org Biomol Chem; 2015 Dec; 13(45):11118-28. PubMed ID: 26400017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Extracted hemoglobins as oxygen transporters: proposal of a hemoglobin-dextran-benzenetetracarboxylate conjugate].
    Vigneron C
    Rev Fr Transfus Hemobiol; 1993 Jan; 36(1):11-8. PubMed ID: 7682813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low oxygen affinity derivatives of human hemoglobin by fixation of polycarboxylic dextran to the oxyform.
    Prouchayret F; Dellacherie E
    Biopolymers; 1993 Dec; 33(12):1803-9. PubMed ID: 7505635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human hemoglobin conjugated to carboxylate dextran as a potential red blood cell substitute. I. Further physico-chemical characterization.
    Quellec P; Léonard M; Grandgeorge M; Dellacherie E
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):669-76. PubMed ID: 7527723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High O2 affinity hemoglobin-based oxygen carriers synthesized via polymerization of hemoglobin with ring-opened 2-chloroethyl-beta-D-fructopyranoside and 1-o-octyl-beta-D-glucopyranoside.
    Dimino ML; Palmer AF
    Biotechnol Bioeng; 2007 Jun; 97(3):462-72. PubMed ID: 17115452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.