BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28884623)

  • 1. Association Between Weather Variables, Airborne Inoculum Concentration, and Raspberry Fruit Rot Caused by Botrytis cinerea.
    Carisse O; McNealis V; Kriss A
    Phytopathology; 2018 Jan; 108(1):70-82. PubMed ID: 28884623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Does Botrytis cinerea Infect Red Raspberry?
    Kozhar O; Peever TL
    Phytopathology; 2018 Nov; 108(11):1287-1298. PubMed ID: 29869956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lagged association between powdery mildew leaf severity, airborne inoculum, weather, and crop losses in strawberry.
    Carisse O; Morissette-Thomas V; Van der Heyden H
    Phytopathology; 2013 Aug; 103(8):811-21. PubMed ID: 23837544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of canopy manipulation on cane and fruit Botrytis in protected raspberry.
    O'Neill T; Berrie AM; Wedgwood E; Allen J; Xu XM
    Commun Agric Appl Biol Sci; 2009; 74(3):633-43. PubMed ID: 20222545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Infection of Strawberry Flowers by Botrytis cinerea Using Field Data.
    Xu X; Harris DC; Berrie AM
    Phytopathology; 2000 Dec; 90(12):1367-74. PubMed ID: 18943378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards.
    Calvo-Garrido C; Usall J; Viñas I; Elmer PA; Cases E; Teixidó N
    Pest Manag Sci; 2014 Jun; 70(6):922-30. PubMed ID: 23963875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Associations Between Drosophila suzukii (Diptera: Drosophilidae) and Fungi in Raspberries.
    Lewis MT; Koivunen EE; Swett CL; Hamby KA
    Environ Entomol; 2019 Feb; 48(1):68-79. PubMed ID: 30520973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal relationships between disease development and airborne inoculum in unmanaged and managed Botrytis leaf blight epidemics.
    Carisse O; Savary S; Willocquet L
    Phytopathology; 2008 Jan; 98(1):38-44. PubMed ID: 18943236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype.
    Ciliberti N; Fermaud M; Roudet J; Rossi V
    Phytopathology; 2015 Aug; 105(8):1090-6. PubMed ID: 26218433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Importance of Selecting Appropriate Rotation and Tank-Mix Partners for Novel SDHIs to Enhance Botrytis Fruit Rot Control in Strawberry.
    Amiri A; Zuniga AI; Cordova LG; Peres NA
    Plant Dis; 2019 Apr; 103(4):729-736. PubMed ID: 30777800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive ability of multi-fungicide resistant Botrytis cinerea in a blackberry planting over three years.
    Cosseboom SD; Schnabel G; Hu M
    Pestic Biochem Physiol; 2020 Feb; 163():1-7. PubMed ID: 31973844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fitness and competitive ability of Botrytis cinerea field isolates with dual resistance to SDHI and QoI fungicides, associated with several sdhB and the cytb G143A mutations.
    Veloukas T; Kalogeropoulou P; Markoglou AN; Karaoglanidis GS
    Phytopathology; 2014 Apr; 104(4):347-56. PubMed ID: 24168041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and fitness of pyraclostrobin- and boscalid-resistant phenotypes in field isolates of Botrytis cinerea from apple.
    Kim YK; Xiao CL
    Phytopathology; 2011 Nov; 101(11):1385-91. PubMed ID: 21692646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. INCIDENCE AND SEVERITY OF LEAF AND FRUIT DISEASES OF PLUMS IN LATVIA.
    Grantina-Ievina L; Stanke L
    Commun Agric Appl Biol Sci; 2015; 80(3):421-33. PubMed ID: 27141740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Weather Conditions Associated with the Occurrence, Severity, and Incidence of Black Seed Disease of Strawberry Caused by Mycosphaerella fragariae.
    Carisse O; McNealis V
    Phytopathology; 2018 Jan; 108(1):83-93. PubMed ID: 28884624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Botrytis infection warnings in strawberry: reduced enhanced chemical control.
    Van Laer S; Hauke K; Meesters P; Creemers P
    Commun Agric Appl Biol Sci; 2005; 70(3):61-71. PubMed ID: 16637160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brown spot control on pear: infection models versus the inoculum pressure in Belgium.
    Van Laer S; Vorstermans B; Hauke K; Creemers P
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):839-47. PubMed ID: 17390829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Important phytopathogenic airborne fungal spores in a rural area: incidence of Botrytis cinerea and Oidium spp.
    Oliveira M; Guerner-Moreira J; Mesquita M; Abreu I
    Ann Agric Environ Med; 2009; 16(2):197-204. PubMed ID: 20047251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validating Sclerotinia sclerotiorum Apothecial Models to Predict Sclerotinia Stem Rot in Soybean (Glycine max) Fields.
    Willbur JF; Fall ML; Byrne AM; Chapman SA; McCaghey MM; Mueller BD; Schmidt R; Chilvers MI; Mueller DS; Kabbage M; Giesler LJ; Conley SP; Smith DL
    Plant Dis; 2018 Dec; 102(12):2592-2601. PubMed ID: 30334675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infection of raspberry leaves by Botrytis cinerea in relation to leaf and cane age.
    Xu XM; Wedgwood E; Berrie AM; O'Neill T
    Commun Agric Appl Biol Sci; 2009; 74(3):761-70. PubMed ID: 20222562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.