BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28884748)

  • 1. A FISH assay efficiently screens for BRAF gene rearrangements in pancreatic acinar-type neoplasms.
    Wang L; Basturk O; Wang J; Benayed R; Middha S; Zehir A; Linkov I; Rao M; Aryeequaye R; Cao L; Chmielecki J; Ross J; Stephens PJ; Adsay V; Askan G; Balci S; Klimstra DS
    Mod Pathol; 2018 Jan; 31(1):132-140. PubMed ID: 28884748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RAF1 rearrangements are common in pancreatic acinar cell carcinomas.
    Prall OWJ; Nastevski V; Xu H; McEvoy CRE; Vissers JHA; Byrne DJ; Takano E; Yerneni S; Ellis S; Green T; Mitchell CA; Murray WK; Scott CL; Grimmond SM; Hofmann O; Papenfuss A; Kee D; Fellowes A; Brown IS; Miller G; Kumarasinghe MP; Perren A; Nahm CB; Mittal A; Samra J; Ahadi M; Fox SB; Chou A; Gill AJ
    Mod Pathol; 2020 Sep; 33(9):1811-1821. PubMed ID: 32358589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BRAF Rearrangements and BRAF V600E Mutations Are Seen in a Subset of Pancreatic Carcinomas With Acinar Differentiation.
    Ghosh T; Greipp PT; Knutson D; Kloft-Nelson S; Jenkins S; Mounajjed T; Said S; La Rosa S; Vanoli A; Sessa F; Naini BV; Bellizzi A; Zhang L; Kerr SE; Graham RP
    Arch Pathol Lab Med; 2022 Jul; 146(7):840-845. PubMed ID: 34614142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RET gene rearrangements occur in a subset of pancreatic acinar cell carcinomas.
    Chou A; Brown IS; Kumarasinghe MP; Perren A; Riley D; Kim Y; Pajic M; Steinmann A; Rathi V; Jamieson NB; Verheij J; van Roessel S; Nahm CB; Mittal A; Samra J; Gill AJ
    Mod Pathol; 2020 Apr; 33(4):657-664. PubMed ID: 31558784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BRAF gene rearrangements can be identified by FISH studies in pancreatic acinar cell carcinoma.
    Chou A; Kim Y; Samra JS; Pajic M; Gill AJ
    Pathology; 2018 Apr; 50(3):345-348. PubMed ID: 29506751
    [No Abstract]   [Full Text] [Related]  

  • 6. Comprehensive genomic profiling of pancreatic acinar cell carcinomas identifies recurrent RAF fusions and frequent inactivation of DNA repair genes.
    Chmielecki J; Hutchinson KE; Frampton GM; Chalmers ZR; Johnson A; Shi C; Elvin J; Ali SM; Ross JS; Basturk O; Balasubramanian S; Lipson D; Yelensky R; Pao W; Miller VA; Klimstra DS; Stephens PJ
    Cancer Discov; 2014 Dec; 4(12):1398-405. PubMed ID: 25266736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AGAP3: A novel BRAF fusion partner in pediatric pancreatic-type acinar cell carcinoma.
    Paoli C; Burel-Vandenbos F; Coulomb-l'Hermine A; Cros J; Pondrom M; Kubiniek V; Pedeutour F; Dadone-Montaudié B
    Genes Chromosomes Cancer; 2022 Dec; 61(12):734-739. PubMed ID: 35949061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel and established EWSR1 gene fusions and associations identified by next-generation sequencing and fluorescence in-situ hybridization.
    Krystel-Whittemore M; Taylor MS; Rivera M; Lennerz JK; Le LP; Dias-Santagata D; Iafrate AJ; Deshpande V; Chebib I; Nielsen GP; Wu CL; Nardi V
    Hum Pathol; 2019 Nov; 93():65-73. PubMed ID: 31430493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene fusion characterisation of rare aggressive prostate cancer variants-adenosquamous carcinoma, pleomorphic giant-cell carcinoma, and sarcomatoid carcinoma: an analysis of 19 cases.
    Alhamar M; Tudor Vladislav I; Smith SC; Gao Y; Cheng L; Favazza LA; Alani AM; Ittmann MM; Riddle ND; Whiteley LJ; Gupta NS; Carskadon S; Gomez-Gelvez JC; Chitale DA; Palanisamy N; Hes O; Trpkov K; Williamson SR
    Histopathology; 2020 Dec; 77(6):890-899. PubMed ID: 32639612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-exome sequencing of pancreatic neoplasms with acinar differentiation.
    Jiao Y; Yonescu R; Offerhaus GJ; Klimstra DS; Maitra A; Eshleman JR; Herman JG; Poh W; Pelosof L; Wolfgang CL; Vogelstein B; Kinzler KW; Hruban RH; Papadopoulos N; Wood LD
    J Pathol; 2014 Mar; 232(4):428-35. PubMed ID: 24293293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Genomic Profiling Identifies a Subset of Crizotinib-Responsive ALK-Rearranged Non-Small Cell Lung Cancer Not Detected by Fluorescence In Situ Hybridization.
    Ali SM; Hensing T; Schrock AB; Allen J; Sanford E; Gowen K; Kulkarni A; He J; Suh JH; Lipson D; Elvin JA; Yelensky R; Chalmers Z; Chmielecki J; Peled N; Klempner SJ; Firozvi K; Frampton GM; Molina JR; Menon S; Brahmer JR; MacMahon H; Nowak J; Ou SH; Zauderer M; Ladanyi M; Zakowski M; Fischbach N; Ross JS; Stephens PJ; Miller VA; Wakelee H; Ganesan S; Salgia R
    Oncologist; 2016 Jun; 21(6):762-70. PubMed ID: 27245569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy.
    Ross JS; Wang K; Chmielecki J; Gay L; Johnson A; Chudnovsky J; Yelensky R; Lipson D; Ali SM; Elvin JA; Vergilio JA; Roels S; Miller VA; Nakamura BN; Gray A; Wong MK; Stephens PJ
    Int J Cancer; 2016 Feb; 138(4):881-90. PubMed ID: 26314551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of NTRK1/3 Rearrangements in Papillary Thyroid Carcinoma Using Immunohistochemistry, Fluorescent In Situ Hybridization, and Next-Generation Sequencing.
    Lee YC; Chen JY; Huang CJ; Chen HS; Yang AH; Hang JF
    Endocr Pathol; 2020 Dec; 31(4):348-358. PubMed ID: 32880785
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Pekova B; Sykorova V; Dvorakova S; Vaclavikova E; Moravcova J; Katra R; Astl J; Vlcek P; Kodetova D; Vcelak J; Bendlova B
    Thyroid; 2020 Dec; 30(12):1771-1780. PubMed ID: 32495721
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparison of gene fusion detection methods in salivary gland tumors.
    Sun L; Petrone JS; McNulty SN; Evenson MJ; Zhu X; Robinson JA; Chernock RD; Duncavage EJ; Pfeifer JD
    Hum Pathol; 2022 May; 123():1-10. PubMed ID: 35183572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrum of
    Chui MH; Chang JC; Zhang Y; Zehir A; Schram AM; Konner J; Drilon AE; Da Cruz Paula A; Weigelt B; Grisham RN
    JCO Precis Oncol; 2021; 5():. PubMed ID: 34568720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MSI-High RAS-BRAF wild-type colorectal adenocarcinomas with MLH1 loss have a high frequency of targetable oncogenic gene fusions whose diagnoses are feasible using methods easy-to-implement in pathology laboratories.
    Bocciarelli C; Caumont C; Samaison L; Cariou M; Aline-Fardin A; Doucet L; Roudié J; Terris B; Merlio JP; Marcorelles P; Cappellen D; Uguen A
    Hum Pathol; 2021 Aug; 114():99-109. PubMed ID: 34019865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gastrointestinal stromal tumors with BRAF gene fusions. A report of two cases showing low or absent KIT expression resulting in diagnostic pitfalls.
    Torrence D; Xie Z; Zhang L; Chi P; Antonescu CR
    Genes Chromosomes Cancer; 2021 Dec; 60(12):789-795. PubMed ID: 34398495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of oncogenic fusions in mismatch repair deficient colorectal carcinomas by sequential DNA and RNA next generation sequencing.
    Wang J; Li R; Li J; Yi Y; Liu X; Chen J; Zhang H; Lu J; Li C; Wu H; Liang Z
    J Transl Med; 2021 Oct; 19(1):433. PubMed ID: 34657620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel GLCCI1-BRAF fusion drives kinase signaling in a case of pheochromocytomatosis.
    Green BL; Grant RRC; Richie CT; Chatterjee B; Sampaio De Melo M; Barr FG; Pacak K; Agarwal SK; Nilubol N
    Eur J Endocrinol; 2022 Jul; 187(1):185-196. PubMed ID: 35861986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.