BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 28884816)

  • 1. Exploiting off-targeting in guide-RNAs for CRISPR systems for simultaneous editing of multiple genes.
    Ferreira R; Gatto F; Nielsen J
    FEBS Lett; 2017 Oct; 591(20):3288-3295. PubMed ID: 28884816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae.
    Ferreira R; Skrekas C; Nielsen J; David F
    ACS Synth Biol; 2018 Jan; 7(1):10-15. PubMed ID: 29161506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
    Fu Y; Reyon D; Joung JK
    Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus.
    Gorter de Vries AR; de Groot PA; van den Broek M; Daran JG
    Microb Cell Fact; 2017 Dec; 16(1):222. PubMed ID: 29207996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR Genome Editing Made Easy Through the CHOPCHOP Website.
    Labun K; Krause M; Torres Cleuren Y; Valen E
    Curr Protoc; 2021 Apr; 1(4):e46. PubMed ID: 33905612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Prediction of CRISPR/Cas9 Target Sites Reveals Potential Off-Target Risks in Human and Mouse.
    Wang Q; Ui-Tei K
    Methods Mol Biol; 2017; 1630():43-53. PubMed ID: 28643248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence.
    Finnigan GC; Thorner J
    G3 (Bethesda); 2016 Jul; 6(7):2147-56. PubMed ID: 27185399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-gRNA Design.
    Pallarès Masmitjà M; Knödlseder N; Güell M
    Methods Mol Biol; 2019; 1961():3-11. PubMed ID: 30912036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9.
    Mans R; Wijsman M; Daran-Lapujade P; Daran JM
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29860374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. multicrispr: gRNA design for prime editing and parallel targeting of thousands of targets.
    Bhagwat AM; Graumann J; Wiegandt R; Bentsen M; Welker J; Kuenne C; Preussner J; Braun T; Looso M
    Life Sci Alliance; 2020 Nov; 3(11):. PubMed ID: 32907859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity.
    Hiranniramol K; Chen Y; Wang X
    Methods Mol Biol; 2020; 2115():351-364. PubMed ID: 32006410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat.
    Cram D; Kulkarni M; Buchwaldt M; Rajagopalan N; Bhowmik P; Rozwadowski K; Parkin IAP; Sharpe AG; Kagale S
    BMC Plant Biol; 2019 Nov; 19(1):474. PubMed ID: 31694550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae.
    Zhang Y; Wang J; Wang Z; Zhang Y; Shi S; Nielsen J; Liu Z
    Nat Commun; 2019 Mar; 10(1):1053. PubMed ID: 30837474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons.
    Billon P; Bryant EE; Joseph SA; Nambiar TS; Hayward SB; Rothstein R; Ciccia A
    Mol Cell; 2017 Sep; 67(6):1068-1079.e4. PubMed ID: 28890334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering guide RNA to reduce the off-target effects of CRISPR.
    Wu J; Yin H
    J Genet Genomics; 2019 Nov; 46(11):523-529. PubMed ID: 31902584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9.
    Fu BXH; Smith JD; Fuchs RT; Mabuchi M; Curcuru J; Robb GB; Fire AZ
    Nat Microbiol; 2019 May; 4(5):888-897. PubMed ID: 30833733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CT-Finder: A Web Service for CRISPR Optimal Target Prediction and Visualization.
    Zhu H; Misel L; Graham M; Robinson ML; Liang C
    Sci Rep; 2016 May; 6():25516. PubMed ID: 27210050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR Guide RNA Design Guidelines for Efficient Genome Editing.
    Schindele P; Wolter F; Puchta H
    Methods Mol Biol; 2020; 2166():331-342. PubMed ID: 32710418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.