BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28885050)

  • 1. Effects of Nitrite and Erythorbate on Clostridium perfringens Growth during Extended Cooling of Cured Ham.
    Osterbauer KJ; King AM; Seman DL; Milkowski AL; Glass KA; Sindelar JJ
    J Food Prot; 2017 Oct; 80(10):1697-1704. PubMed ID: 28885050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of meat ingredients (sodium nitrite and erythorbate) and processing (vacuum storage and packaging atmosphere) on germination and outgrowth of Clostridium perfringens spores in ham during abusive cooling.
    Redondo-Solano M; Valenzuela-Martinez C; Cassada DA; Snow DD; Juneja VK; Burson DE; Thippareddi H
    Food Microbiol; 2013 Sep; 35(2):108-15. PubMed ID: 23664261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of cooking, cooling, and subsequent refrigeration on the growth or survival of Clostridium perfringens in cooked meat and poultry products.
    Kalinowski RM; Tompkin RB; Bodnaruk PW; Pruett WP
    J Food Prot; 2003 Jul; 66(7):1227-32. PubMed ID: 12870757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the Effect of Curing Ingredients Derived from Purified and Natural Sources on Inhibition of Clostridium perfringens Outgrowth during Cooling of Deli-Style Turkey Breast.
    King AM; Glass KA; Milkowski AL; Sindelar JJ
    J Food Prot; 2015 Aug; 78(8):1527-35. PubMed ID: 26219366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth potential of Clostridium perfringens from spores in acidified beef, pork, and poultry products during chilling.
    Juneja VK; Baker DA; Thippareddi H; Snyder OP; Mohr TB
    J Food Prot; 2013 Jan; 76(1):65-71. PubMed ID: 23317858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Clean-Label Antimicrobials and Nitrite Derived from Natural Sources on the Outgrowth of Clostridium perfringens during Cooling of Deli-Style Turkey Breast.
    King AM; Glass KA; Milkowski AL; Sindelar JJ
    J Food Prot; 2015 May; 78(5):946-53. PubMed ID: 25951389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Clostridium perfringens growth by potassium lactate during an extended cooling of cooked uncured ground turkey breasts.
    Kennedy KM; Milkowski AL; Glass KA
    J Food Prot; 2013 Nov; 76(11):1972-6. PubMed ID: 24215704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of NaCl content and cooling rate on outgrowth of Clostridium perfringens spores in cooked ham and beef.
    Zaika LL
    J Food Prot; 2003 Sep; 66(9):1599-603. PubMed ID: 14503712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the Performance of a New Model for Predicting the Growth of Clostridium perfringens in Cooked, Uncured Meat and Poultry Products under Isothermal, Heating, and Dynamically Cooling Conditions.
    Huang L
    J Food Sci; 2016 Jul; 81(7):M1754-65. PubMed ID: 27259065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham.
    Amézquita A; Weller CL; Wang L; Thippareddi H; Burson DE
    Int J Food Microbiol; 2005 May; 101(2):123-44. PubMed ID: 15862875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive model for growth of Clostridium perfringens during cooling of cooked uncured meat and poultry.
    Juneja VK; Marks H; Huang L; Thippareddi H
    Food Microbiol; 2011 Jun; 28(4):791-5. PubMed ID: 21511140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of bacon processing conditions to verify control of Clostridium perfringens and Staphylococcus aureus.
    Taormina PJ; Bartholomew GW
    J Food Prot; 2005 Sep; 68(9):1831-9. PubMed ID: 16161681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Clostridium perfringens spore germination and outgrowth by lemon juice and vinegar product in reduced NaCl roast beef.
    Li L; Valenzuela-Martinez C; Redondo M; Juneja VK; Burson DE; Thippareddi H
    J Food Sci; 2012 Nov; 77(11):M598-603. PubMed ID: 23163907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative cooling procedures for large, intact meat products to achieve stabilization microbiological performance standards.
    Haneklaus AN; Harris KB; Márquez-González M; Lucia LM; Castillo A; Hardin MD; Osburn WN; Savell JW
    J Food Prot; 2011 Jan; 74(1):101-5. PubMed ID: 21219768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of spices and organic acids on the growth of Clostridium perfringens during cooling of cooked ground beef.
    Sabah JR; Juneja VK; Fung DY
    J Food Prot; 2004 Sep; 67(9):1840-7. PubMed ID: 15453573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the Performance of Clostridium perfringens Cooling Models for Cooked, Uncured Meat and Poultry Products.
    Mohr TB; Juneja VK; Thippareddi HH; Schaffner DW; Bronstein PA; Silverman M; Cook LV
    J Food Prot; 2015 Aug; 78(8):1512-26. PubMed ID: 26219365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of natural ingredients to control growth of Clostridium perfringens in naturally cured frankfurters and hams.
    Jackson AL; Kulchaiyawat C; Sullivan GA; Sebranek JG; Dickson JS
    J Food Prot; 2011 Mar; 74(3):417-24. PubMed ID: 21375878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incidence of Clostridium perfringens in commercially produced cured raw meat product mixtures and behavior in cooked products during chilling and refrigerated storage.
    Taormina PJ; Bartholomew GW; Dorsa WJ
    J Food Prot; 2003 Jan; 66(1):72-81. PubMed ID: 12540184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive model for Clostridium perfringens growth in roast beef during cooling and inhibition of spore germination and outgrowth by organic acid salts.
    Sánchez-Plata MX; Amézquita A; Blankenship E; Burson DE; Juneja V; Thippareddi H
    J Food Prot; 2005 Dec; 68(12):2594-605. PubMed ID: 16355831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the microbial quality of Tajik sambusa and control of Clostridium perfringens germination and outgrowth by buffered sodium citrate and potassium lactate.
    Yarbaeva SN; Velugoti PR; Thippareddi H; Albrecht JA
    J Food Prot; 2008 Jan; 71(1):77-82. PubMed ID: 18236666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.