These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. CCCP algorithms to minimize the Bethe and Kikuchi free energies: convergent alternatives to belief propagation. Yuille AL Neural Comput; 2002 Jul; 14(7):1691-722. PubMed ID: 12079552 [TBL] [Abstract][Full Text] [Related]
4. Improved belief propagation algorithm finds many Bethe states in the random-field Ising model on random graphs. Perugini G; Ricci-Tersenghi F Phys Rev E; 2018 Jan; 97(1-1):012152. PubMed ID: 29448365 [TBL] [Abstract][Full Text] [Related]
6. Correctness of belief propagation in Gaussian graphical models of arbitrary topology. Weiss Y; Freeman WT Neural Comput; 2001 Oct; 13(10):2173-200. PubMed ID: 11570995 [TBL] [Abstract][Full Text] [Related]
7. Numerical optimization using flow equations. Punk M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063307. PubMed ID: 25615222 [TBL] [Abstract][Full Text] [Related]
8. Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method. Mehta D Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):025702. PubMed ID: 21929056 [TBL] [Abstract][Full Text] [Related]
10. Laplace transform homotopy perturbation method for the approximation of variational problems. Filobello-Nino U; Vazquez-Leal H; Rashidi MM; Sedighi HM; Perez-Sesma A; Sandoval-Hernandez M; Sarmiento-Reyes A; Contreras-Hernandez AD; Pereyra-Diaz D; Hoyos-Reyes C; Jimenez-Fernandez VM; Huerta-Chua J; Castro-Gonzalez F; Laguna-Camacho JR Springerplus; 2016; 5():276. PubMed ID: 27006884 [TBL] [Abstract][Full Text] [Related]
11. On resolving simultaneous congruences using belief propagation. Yoo Y; Vishwanath S Neural Comput; 2015 Mar; 27(3):748-70. PubMed ID: 25602774 [TBL] [Abstract][Full Text] [Related]
12. Linear response algorithms for approximate inference in graphical models. Welling M; Teh YW Neural Comput; 2004 Jan; 16(1):197-221. PubMed ID: 15006029 [TBL] [Abstract][Full Text] [Related]
13. HomPINNs: homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions. Zheng H; Huang Y; Huang Z; Hao W; Lin G J Comput Phys; 2024 Mar; 500():. PubMed ID: 38283188 [TBL] [Abstract][Full Text] [Related]
14. Estimation and marginalization using the Kikuchi approximation methods. Pakzad P; Anantharam V Neural Comput; 2005 Aug; 17(8):1836-73. PubMed ID: 15969920 [TBL] [Abstract][Full Text] [Related]
15. Correctness of local probability in graphical models with loops. Weiss Y Neural Comput; 2000 Jan; 12(1):1-41. PubMed ID: 10636932 [TBL] [Abstract][Full Text] [Related]
16. Determination of small crystal structures from a minimum set of diffraction intensities by homotopy continuation. Leggas D; Tsodikov OV Acta Crystallogr A Found Adv; 2015 May; 71(Pt 3):319-24. PubMed ID: 25921500 [TBL] [Abstract][Full Text] [Related]
17. Bayes-optimal inference for spreading processes on random networks. Ghio D; Aragon ALM; Biazzo I; Zdeborová L Phys Rev E; 2023 Oct; 108(4-1):044308. PubMed ID: 37978700 [TBL] [Abstract][Full Text] [Related]
18. Marginal Consistency: Upper-Bounding Partition Functions over Commutative Semirings. Werner T IEEE Trans Pattern Anal Mach Intell; 2015 Jul; 37(7):1455-68. PubMed ID: 26352452 [TBL] [Abstract][Full Text] [Related]
19. Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods. Basiri Parsa A; Rashidi MM; Anwar Bég O; Sadri SM Comput Biol Med; 2013 Sep; 43(9):1142-53. PubMed ID: 23930807 [TBL] [Abstract][Full Text] [Related]
20. Pose-free structure from motion using depth from motion constraints. Zhang J; Boutin M; Aliaga DG IEEE Trans Image Process; 2011 Oct; 20(10):2937-53. PubMed ID: 21521669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]