These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 28885155)
1. A Nonlinear Dynamics-Based Estimator for Functional Electrical Stimulation: Preliminary Results From Lower-Leg Extension Experiments. Allen M; Zhong Q; Kirsch N; Dani A; Clark WW; Sharma N IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2365-2374. PubMed ID: 28885155 [TBL] [Abstract][Full Text] [Related]
2. On Inertial Body Tracking in the Presence of Model Calibration Errors. Miezal M; Taetz B; Bleser G Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266 [TBL] [Abstract][Full Text] [Related]
3. Estimating Lower Limb Kinematics Using a Lie Group Constrained Extended Kalman Filter with a Reduced Wearable IMU Count and Distance Measurements. Sy LWF; Lovell NH; Redmond SJ Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260386 [TBL] [Abstract][Full Text] [Related]
4. Estimating Lower Limb Kinematics using Distance Measurements with a Reduced Wearable Inertial Sensor Count. Sy L; Lovell NH; Redmond SJ Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4858-4862. PubMed ID: 33019078 [TBL] [Abstract][Full Text] [Related]
5. Exploiting kinematic constraints to compensate magnetic disturbances when calculating joint angles of approximate hinge joints from orientation estimates of inertial sensors. Laidig D; Schauer T; Seel T IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():971-976. PubMed ID: 28813947 [TBL] [Abstract][Full Text] [Related]
6. Design and Test of a Biomechanical Model for the Estimation of Knee Joint Angle During Indoor Rowing: Implications for FES-Rowing Protocols in Paraplegia. Vieira T; Cerone GL; Gastaldi L; Pastorelli S; Oliveira LF; Gazzoni M; Botter A IEEE Trans Neural Syst Rehabil Eng; 2018 Nov; 26(11):2145-2152. PubMed ID: 30334801 [TBL] [Abstract][Full Text] [Related]
7. IMU-Based Knee Angle Estimation using an Extended Kalman Filter. Hidalgo AF; Lora-Millan JS; Rocon E Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():570-573. PubMed ID: 31945963 [TBL] [Abstract][Full Text] [Related]
8. Mathematical model that predicts lower leg motion in response to electrical stimulation. Perumal R; Wexler AS; Binder-Macleod SA J Biomech; 2006; 39(15):2826-36. PubMed ID: 16307749 [TBL] [Abstract][Full Text] [Related]
9. Quadriceps voluntary activation at different joint angles measured by two stimulation techniques. Newman SA; Jones G; Newham DJ Eur J Appl Physiol; 2003 Jun; 89(5):496-9. PubMed ID: 12712353 [TBL] [Abstract][Full Text] [Related]
10. Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit. Bonnet V; Mazzà C; Fraisse P; Cappozzo A IEEE Trans Biomed Eng; 2013 Jul; 60(7):1920-6. PubMed ID: 23392337 [TBL] [Abstract][Full Text] [Related]
11. Prediction of antagonistic muscle forces using inverse dynamic optimization during flexion/extension of the knee. Li G; Kaufman KR; Chao EY; Rubash HE J Biomech Eng; 1999 Jun; 121(3):316-22. PubMed ID: 10396698 [TBL] [Abstract][Full Text] [Related]
12. Lower extremity extension force and electromyography properties as a function of knee angle and their relation to joint torques: implications for strength diagnostics. Hahn D J Strength Cond Res; 2011 Jun; 25(6):1622-31. PubMed ID: 21386725 [TBL] [Abstract][Full Text] [Related]
13. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
14. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach. Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275 [TBL] [Abstract][Full Text] [Related]
15. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements. Teufl W; Miezal M; Taetz B; Fröhlich M; Bleser G PLoS One; 2019; 14(2):e0213064. PubMed ID: 30817787 [TBL] [Abstract][Full Text] [Related]
16. Knee and ankle joint torque-angle relationships of multi-joint leg extension. Hahn D; Olvermann M; Richtberg J; Seiberl W; Schwirtz A J Biomech; 2011 Jul; 44(11):2059-65. PubMed ID: 21621211 [TBL] [Abstract][Full Text] [Related]
17. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics. Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183 [TBL] [Abstract][Full Text] [Related]
18. Estimation of Lower Limb Joint Angles and Joint Moments during Different Locomotive Activities Using the Inertial Measurement Units and a Hybrid Deep Learning Model. Wang F; Liang W; Afzal HMR; Fan A; Li W; Dai X; Liu S; Hu Y; Li Z; Yang P Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005427 [TBL] [Abstract][Full Text] [Related]
19. Influence of joint position on electromyographic and torque generation during maximal voluntary isometric contractions of the hamstrings and gluteus maximus muscles. Worrell TW; Karst G; Adamczyk D; Moore R; Stanley C; Steimel B; Steimel S J Orthop Sports Phys Ther; 2001 Dec; 31(12):730-40. PubMed ID: 11767248 [TBL] [Abstract][Full Text] [Related]
20. Joint kinematics estimate using wearable inertial and magnetic sensing modules. Picerno P; Cereatti A; Cappozzo A Gait Posture; 2008 Nov; 28(4):588-95. PubMed ID: 18502130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]