These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28885158)

  • 41. Dynamics of unperturbed and noisy generalized Boolean networks.
    Darabos Ch; Tomassini M; Giacobini M
    J Theor Biol; 2009 Oct; 260(4):531-44. PubMed ID: 19616562
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reduction techniques for network validation in systems biology.
    Ackermann J; Einloft J; Nöthen J; Koch I
    J Theor Biol; 2012 Dec; 315():71-80. PubMed ID: 22982289
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic deterministic effects propagation networks: learning signalling pathways from longitudinal protein array data.
    Bender C; Henjes F; Fröhlich H; Wiemann S; Korf U; Beissbarth T
    Bioinformatics; 2010 Sep; 26(18):i596-602. PubMed ID: 20823327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Discrete dynamic modeling with asynchronous update, or how to model complex systems in the absence of quantitative information.
    Assmann SM; Albert R
    Methods Mol Biol; 2009; 553():207-25. PubMed ID: 19588107
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic network analyzer: a tool for the qualitative modeling and simulation of bacterial regulatory networks.
    Batt G; Besson B; Ciron PE; de Jong H; Dumas E; Geiselmann J; Monte R; Monteiro PT; Page M; Rechenmann F; Ropers D
    Methods Mol Biol; 2012; 804():439-62. PubMed ID: 22144166
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A hybrid model of cell cycle in mammals.
    Behaegel J; Comet JP; Bernot G; Cornillon E; Delaunay F
    J Bioinform Comput Biol; 2016 Feb; 14(1):1640001. PubMed ID: 26708052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. FlexFlux: combining metabolic flux and regulatory network analyses.
    Marmiesse L; Peyraud R; Cottret L
    BMC Syst Biol; 2015 Dec; 9():93. PubMed ID: 26666757
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A survey on methods for modeling and analyzing integrated biological networks.
    Tenazinha N; Vinga S
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):943-58. PubMed ID: 21116043
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Control of Intracellular Molecular Networks Using Algebraic Methods.
    Sordo Vieira L; Laubenbacher RC; Murrugarra D
    Bull Math Biol; 2019 Dec; 82(1):2. PubMed ID: 31919596
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ILP/SMT-Based Method for Design of Boolean Networks Based on Singleton Attractors.
    Kobayashi K; Hiraishi K
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1253-9. PubMed ID: 26357060
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy.
    Andrec M; Kholodenko BN; Levy RM; Sontag E
    J Theor Biol; 2005 Feb; 232(3):427-41. PubMed ID: 15572066
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Time-dependent structural transformation analysis to high-level Petri net model with active state transition diagram.
    Li C; Nagasaki M; Saito A; Miyano S
    BMC Syst Biol; 2010 Apr; 4():39. PubMed ID: 20356411
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimising Boolean Synthetic Regulatory Networks to Control Cell States.
    Taou N; Lones M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2649-2658. PubMed ID: 32078555
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of discrete bioregulatory networks using symbolic steady states.
    Siebert H
    Bull Math Biol; 2011 Apr; 73(4):873-98. PubMed ID: 21170598
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stochastic simulation of Boolean rxncon models: towards quantitative analysis of large signaling networks.
    Mori T; Flöttmann M; Krantz M; Akutsu T; Klipp E
    BMC Syst Biol; 2015 Aug; 9():45. PubMed ID: 26259567
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Formalizing Metabolic-Regulatory Networks by Hybrid Automata.
    Liu L; Bockmayr A
    Acta Biotheor; 2020 Mar; 68(1):73-85. PubMed ID: 31342219
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A reverse engineering approach to optimize experiments for the construction of biological regulatory networks.
    Zhang X; Shao B; Wu Y; Qi O
    PLoS One; 2013; 8(9):e75931. PubMed ID: 24069453
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formal derivation of qualitative dynamical models from biochemical networks.
    Abou-Jaoudé W; Thieffry D; Feret J
    Biosystems; 2016 Nov; 149():70-112. PubMed ID: 27619217
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An Efficient Approach Towards the Source-Target Control of Boolean Networks.
    Paul S; Su C; Pang J; Mizera A
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1932-1945. PubMed ID: 31095489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.