BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 28885181)

  • 1. ChIP-Seq: A Powerful Tool for Studying Protein-DNA Interactions in Plants.
    Chen X; Bhadauria V; Ma B
    Curr Issues Mol Biol; 2018; 27():171-180. PubMed ID: 28885181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Use of the Chromatin Immunoprecipitation Technique for In Vivo Identification of Plant Protein-DNA Interactions.
    Jarillo JA; Komar DN; Piñeiro M
    Methods Mol Biol; 2018; 1794():323-334. PubMed ID: 29855969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Rapid and Efficient ChIP Protocol to Profile Chromatin Binding Proteins and Epigenetic Modifications in Arabidopsis.
    Desvoyes B; Vergara Z; Sequeira-Mendes J; Madeira S; Gutierrez C
    Methods Mol Biol; 2018; 1675():71-82. PubMed ID: 29052186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Identification for Targets of Circadian Transcription Factors in Arabidopsis and Rice Using Chromatin Immunoprecipitation Followed by Sequencing (ChIP-seq).
    Xu S; Huang J; Jin J; Huang W
    Methods Mol Biol; 2021; 2297():61-74. PubMed ID: 33656670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin Immunoprecipitation Protocol for Histone Modifications and Protein-DNA Binding Analyses in Arabidopsis.
    You W; Pien S; Grossniklaus U
    Methods Mol Biol; 2017; 1456():1-13. PubMed ID: 27770353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R; Ozer HG; Wei H; Prabhu L; Lu T
    Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants.
    Saleh A; Alvarez-Venegas R; Avramova Z
    Nat Protoc; 2008; 3(6):1018-25. PubMed ID: 18536649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin immunoprecipitation protocol for histone modifications and protein-DNA binding analyses in Arabidopsis.
    Pien S; Grossniklaus U
    Methods Mol Biol; 2010; 631():209-20. PubMed ID: 20204877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitatively profiling genome-wide patterns of histone modifications in Arabidopsis thaliana using ChIP-seq.
    Luo C; Lam E
    Methods Mol Biol; 2014; 1112():177-93. PubMed ID: 24478015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ChIP-Seq: Library Preparation and Sequencing.
    Sheaffer KL; Schug J
    Methods Mol Biol; 2016; 1402():101-117. PubMed ID: 26721486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification of transcription factor-binding sites in plants using chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq).
    Zhu JY; Sun Y; Wang ZY
    Methods Mol Biol; 2012; 876():173-88. PubMed ID: 22576095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Identification of Transcription Factor-Binding Sites in Quiescent Adult Neural Stem Cells.
    Mukherjee S; Hsieh J
    Methods Mol Biol; 2018; 1686():265-286. PubMed ID: 29030827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ChIP on chip and ChIP-Seq assays: genome-wide analysis of transcription factor binding and histone modifications.
    Pillai S; Chellappan SP
    Methods Mol Biol; 2015; 1288():447-72. PubMed ID: 25827896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP).
    Kaufmann K; Muiño JM; Østerås M; Farinelli L; Krajewski P; Angenent GC
    Nat Protoc; 2010 Mar; 5(3):457-72. PubMed ID: 20203663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ChIP-seq analysis of histone modifications at the core of the Arabidopsis circadian clock.
    Malapeira J; Mas P
    Methods Mol Biol; 2014; 1158():57-69. PubMed ID: 24792044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements.
    Rye M; Sætrom P; Håndstad T; Drabløs F
    BMC Biol; 2011 Nov; 9():80. PubMed ID: 22115494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of in vivo DNA-binding events of plant transcription factors by ChIP-seq: experimental protocol and computational analysis.
    van Mourik H; Muiño JM; Pajoro A; Angenent GC; Kaufmann K
    Methods Mol Biol; 2015; 1284():93-121. PubMed ID: 25757769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly reproducible ChIP-on-chip analysis to identify genome-wide protein binding and chromatin status in Arabidopsis thaliana.
    Kim JM; To TK; Tanaka M; Endo TA; Matsui A; Ishida J; Robertson FC; Toyoda T; Seki M
    Methods Mol Biol; 2014; 1062():405-26. PubMed ID: 24057379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOBE-ChIP: Probing Cell Type-Specific Binding Through Large-Scale Chromatin Immunoprecipitation.
    Wang S; Lau OS
    Methods Mol Biol; 2018; 1689():167-176. PubMed ID: 29027174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-Binding Factor Target Identification by Chromatin Immunoprecipitation (ChIP) in Plants.
    Posé D; Yant L
    Methods Mol Biol; 2016; 1363():25-35. PubMed ID: 26577778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.