These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Gelatin-based 3D conduits for transdifferentiation of mesenchymal stem cells into Schwann cell-like phenotypes. Uz M; Büyüköz M; Sharma AD; Sakaguchi DS; Altinkaya SA; Mallapragada SK Acta Biomater; 2017 Apr; 53():293-306. PubMed ID: 28213098 [TBL] [Abstract][Full Text] [Related]
44. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking. Sakai S; Ohi H; Hotta T; Kamei H; Taya M Biopolymers; 2018 Feb; 109(2):. PubMed ID: 29139103 [TBL] [Abstract][Full Text] [Related]
45. Polymeric Gelatin Scaffolds Affect Mesenchymal Stem Cell Differentiation and Its Diverse Applications in Tissue Engineering. Wang CY; Hong PD; Wang DH; Cherng JH; Chang SJ; Liu CC; Fang TJ; Wang YW Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33207764 [TBL] [Abstract][Full Text] [Related]
46. Human Ng2+ adipose stem cells loaded in vivo on a new crosslinked hyaluronic acid-Lys scaffold fabricate a skeletal muscle tissue. Desiderio V; De Francesco F; Schiraldi C; De Rosa A; La Gatta A; Paino F; d'Aquino R; Ferraro GA; Tirino V; Papaccio G J Cell Physiol; 2013 Aug; 228(8):1762-73. PubMed ID: 23359523 [TBL] [Abstract][Full Text] [Related]
47. Characterization of human adipose tissue-derived stem cells in vitro culture and in vivo differentiation in a temperature-sensitive chitosan/β- glycerophosphate/collagen hybrid hydrogel. Song K; Li L; Yan X; Zhang W; Zhang Y; Wang Y; Liu T Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):231-240. PubMed ID: 27770886 [TBL] [Abstract][Full Text] [Related]
48. Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids. Zhang K; Song L; Wang J; Yan S; Li G; Cui L; Yin J Acta Biomater; 2017 Mar; 51():246-257. PubMed ID: 28093366 [TBL] [Abstract][Full Text] [Related]
49. [Proliferation and osteogenic differentiation of mesenchymal stem cells in hydrogels of human blood plasma]. Linero IM; Doncel A; Chaparro O Biomedica; 2014; 34(1):67-78. PubMed ID: 24967860 [TBL] [Abstract][Full Text] [Related]
50. Coculture of mesenchymal stem cells and endothelial cells enhances host tissue integration and epidermis maturation through AKT activation in gelatin methacryloyl hydrogel-based skin model. Zhang X; Li J; Ye P; Gao G; Hubbell K; Cui X Acta Biomater; 2017 Sep; 59():317-326. PubMed ID: 28684336 [TBL] [Abstract][Full Text] [Related]
51. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Mauney JR; Nguyen T; Gillen K; Kirker-Head C; Gimble JM; Kaplan DL Biomaterials; 2007 Dec; 28(35):5280-90. PubMed ID: 17765303 [TBL] [Abstract][Full Text] [Related]
52. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells. Li DW; Lei X; He FL; He J; Liu YL; Ye YJ; Deng X; Duan E; Yin DC Int J Biol Macromol; 2017 Dec; 105(Pt 1):584-597. PubMed ID: 28802849 [TBL] [Abstract][Full Text] [Related]
53. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration. Shamaz BH; Anitha A; Vijayamohan M; Kuttappan S; Nair S; Nair MB Nanotechnology; 2015 Oct; 26(40):405101. PubMed ID: 26373968 [TBL] [Abstract][Full Text] [Related]
54. Adipose tissue-derived ECM hydrogels and their use as 3D culture scaffold. Getova VE; van Dongen JA; Brouwer LA; Harmsen MC Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1693-1701. PubMed ID: 31062610 [TBL] [Abstract][Full Text] [Related]
55. Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization. Kayabolen A; Keskin D; Aykan A; Karslıoglu Y; Zor F; Tezcaner A Biomed Mater; 2017 Jun; 12(3):035007. PubMed ID: 28361795 [TBL] [Abstract][Full Text] [Related]
56. Chitosan/gelatin scaffolds support bone regeneration. Georgopoulou A; Papadogiannis F; Batsali A; Marakis J; Alpantaki K; Eliopoulos AG; Pontikoglou C; Chatzinikolaidou M J Mater Sci Mater Med; 2018 May; 29(5):59. PubMed ID: 29730855 [TBL] [Abstract][Full Text] [Related]
57. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis. Cheng NC; Lin WJ; Ling TY; Young TH Acta Biomater; 2017 Mar; 51():258-267. PubMed ID: 28131942 [TBL] [Abstract][Full Text] [Related]
58. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels. Brown CF; Yan J; Han TT; Marecak DM; Amsden BG; Flynn LE Biomed Mater; 2015 Jul; 10(4):045010. PubMed ID: 26225549 [TBL] [Abstract][Full Text] [Related]
59. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Awad HA; Wickham MQ; Leddy HA; Gimble JM; Guilak F Biomaterials; 2004 Jul; 25(16):3211-22. PubMed ID: 14980416 [TBL] [Abstract][Full Text] [Related]
60. Self-Assembled Peptide-Based Hydrogels as Scaffolds for Proliferation and Multi-Differentiation of Mesenchymal Stem Cells. Wang YL; Lin SP; Nelli SR; Zhan FK; Cheng H; Lai TS; Yeh MY; Lin HC; Hung SC Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27792283 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]