BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 28885567)

  • 1. Metabolic and Homeostatic Changes in Seizures and Acquired Epilepsy-Mitochondria, Calcium Dynamics and Reactive Oxygen Species.
    Kovac S; Dinkova Kostova AT; Herrmann AM; Melzer N; Meuth SG; Gorji A
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28885567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy.
    Rowley S; Patel M
    Free Radic Biol Med; 2013 Sep; 62():121-131. PubMed ID: 23411150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ROS in Ca(2+) signaling and disease-part 2.
    Ambudkar IS; Muallem S
    Cell Calcium; 2016 Sep; 60(3):153-4. PubMed ID: 27553171
    [No Abstract]   [Full Text] [Related]  

  • 4. Calcium and ROS: A mutual interplay.
    Görlach A; Bertram K; Hudecova S; Krizanova O
    Redox Biol; 2015 Dec; 6():260-271. PubMed ID: 26296072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of mitochondria in epileptogenesis.
    Kunz WS
    Curr Opin Neurol; 2002 Apr; 15(2):179-84. PubMed ID: 11923632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro.
    Zhong H; Song R; Pang Q; Liu Y; Zhuang J; Chen Y; Hu J; Hu J; Liu Y; Liu Z; Tang J
    Cell Death Dis; 2018 Sep; 9(10):932. PubMed ID: 30224699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial dysfunction in epilepsy.
    Folbergrová J; Kunz WS
    Mitochondrion; 2012 Jan; 12(1):35-40. PubMed ID: 21530687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Dysfunction and Oxidative Stress in Epilepsy.
    Pearson-Smith JN; Patel M
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29117123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy?
    Waldbaum S; Patel M
    J Bioenerg Biomembr; 2010 Dec; 42(6):449-55. PubMed ID: 21132357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant activity of mesenchymal stem cell-derived extracellular vesicles restores hippocampal neurons following seizure damage.
    Luo Q; Xian P; Wang T; Wu S; Sun T; Wang W; Wang B; Yang H; Yang Y; Wang H; Liu W; Long Q
    Theranostics; 2021; 11(12):5986-6005. PubMed ID: 33897894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction to the mini-review series on mitochondrial matters in epilepsy.
    Sack GH
    J Bioenerg Biomembr; 2010 Dec; 42(6):441-2. PubMed ID: 21153690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nrf2 activation through the PI3K/GSK-3 axis protects neuronal cells from Aβ-mediated oxidative and metabolic damage.
    Sotolongo K; Ghiso J; Rostagno A
    Alzheimers Res Ther; 2020 Jan; 12(1):13. PubMed ID: 31931869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interventions with neuroprotective agents: novel targets and opportunities.
    Sullivan PG
    Epilepsy Behav; 2005 Dec; 7 Suppl 3():S12-7. PubMed ID: 16239125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress.
    Liu D; Chan SL; de Souza-Pinto NC; Slevin JR; Wersto RP; Zhan M; Mustafa K; de Cabo R; Mattson MP
    Neuromolecular Med; 2006; 8(3):389-414. PubMed ID: 16775390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into the role of mitochondrial calcium homeostasis in cell migration.
    Paupe V; Prudent J
    Biochem Biophys Res Commun; 2018 May; 500(1):75-86. PubMed ID: 28495532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration.
    Goodfellow MJ; Borcar A; Proctor JL; Greco T; Rosenthal RE; Fiskum G
    Exp Neurol; 2020 Jun; 328():113247. PubMed ID: 32061629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian Control of Mitochondria in Reactive Oxygen Species Homeostasis.
    Mezhnina V; Ebeigbe OP; Poe A; Kondratov RV
    Antioxid Redox Signal; 2022 Oct; 37(10-12):647-663. PubMed ID: 35072523
    [No Abstract]   [Full Text] [Related]  

  • 18. Reactive oxygen species in status epilepticus.
    Shekh-Ahmad T; Kovac S; Abramov AY; Walker MC
    Epilepsy Behav; 2019 Dec; 101(Pt B):106410. PubMed ID: 31378559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reviving mitochondrial bioenergetics: A relevant approach in epilepsy.
    Singh S; Singh TG; Rehni AK; Sharma V; Singh M; Kaur R
    Mitochondrion; 2021 May; 58():213-226. PubMed ID: 33775871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of acute mitochondrial dysfunction on hyperexcitable network activity in rat hippocampus in vitro.
    Andreasen M; Nedergaard S
    Brain Res; 2021 Jan; 1751():147193. PubMed ID: 33157100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.