These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28885577)

  • 1. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.
    Tilakaratne BP; Chen QY; Chu WK
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28885577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment.
    Zeng X; Pelenovich V; Xing B; Rakhimov R; Zuo W; Tolstogouzov A; Liu C; Fu D; Xiao X
    Beilstein J Nanotechnol; 2020; 11():383-390. PubMed ID: 32175218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ripple formation on silicon by medium energy ion bombardment.
    Chini TK; Datta DP; Bhattacharyya SR
    J Phys Condens Matter; 2009 Jun; 21(22):224004. PubMed ID: 21715743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low energy Ar+ ion beam irradiation effects on Si ripple pattern.
    Pahlovy SA; Yanagimoto K; Miyamoto I
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1068-73. PubMed ID: 21456140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations of ripple pattern formation on Germanium surfaces using 100-keV Ar(+) ions.
    Sulania I; Agarwal D; Husain M; Avasthi DK
    Nanoscale Res Lett; 2015; 10():88. PubMed ID: 25852384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KeV ion-induced effective surface modifications on InP.
    Sulania I; Tripathi A; Kabiraj D; Varma S; Avasthi DK
    J Nanosci Nanotechnol; 2008 Aug; 8(8):4163-7. PubMed ID: 19049195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topography evolution of 500 keV Ar(4+) ion beam irradiated InP(100) surfaces - formation of self-organized In-rich nano-dots and scaling laws.
    Sulania I; Agarwal DC; Kumar M; Kumar S; Kumar P
    Phys Chem Chem Phys; 2016 Jul; 18(30):20363-70. PubMed ID: 27400760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent segregation and erosion effects in medium-energy iron beam patterning of silicon surfaces.
    Redondo-Cubero A; Lorenz K; Palomares FJ; Muñoz A; Castro M; Muñoz-García J; Cuerno R; Vázquez L
    J Phys Condens Matter; 2018 Jul; 30(27):274001. PubMed ID: 29794326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ripple coarsening on ion beam-eroded surfaces.
    Teichmann M; Lorbeer J; Frost F; Rauschenbach B
    Nanoscale Res Lett; 2014; 9(1):439. PubMed ID: 25302058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering.
    Ziberi B; Cornejo M; Frost F; Rauschenbach B
    J Phys Condens Matter; 2009 Jun; 21(22):224003. PubMed ID: 21715742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early stage of ripple formation on Ge(001) surfaces under near-normal ion beam sputtering.
    Carbone D; Alija A; Plantevin O; Gago R; Facsko S; Metzger TH
    Nanotechnology; 2008 Jan; 19(3):035304. PubMed ID: 21817567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering.
    Gago R; Jaafar M; Palomares FJ
    J Phys Condens Matter; 2018 Jul; 30(26):264003. PubMed ID: 29762135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of nanoscale ripple topographies produced by ion bombardment near the threshold for pattern formation.
    Bradley RM
    Phys Rev E; 2020 Jul; 102(1-1):012807. PubMed ID: 32794991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal evolution on SiO
    Kumar M; Datta DP; Basu T; Garg SK; Hofsäss H; Som T
    J Phys Condens Matter; 2018 Aug; 30(33):334001. PubMed ID: 29978837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focused-ion-Beam induced nano feature self-assembly on glassy carbon.
    Hu Q; O'Neill W
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5394-401. PubMed ID: 21770194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonal time-of-flight secondary ion mass spectrometric analysis of peptides using large gold clusters as primary ions.
    Tempez A; Schultz JA; Della-Negra S; Depauw J; Jacquet D; Novikov A; Lebeyec Y; Pautrat M; Caroff M; Ugarov M; Bensaoula H; Gonin M; Fuhrer K; Woods A
    Rapid Commun Mass Spectrom; 2004; 18(4):371-6. PubMed ID: 14966842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially varying chemical phase formation on silicon nano ripple by low energy mixed ions bombardment.
    Mukherjee J; Bhowmik D; Bhattacharyya G; Satpati B; Karmakar P
    J Phys Condens Matter; 2022 Jan; 34(13):. PubMed ID: 34996060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled nano-dots structures on Si(111) surfaces by oblique angle sputter-deposition.
    Gupta D; Kumari R; Umapathy GR; Singhal R; Ojha S; Sahoo PK; Aggarwal S
    Nanotechnology; 2019 Sep; 30(38):385301. PubMed ID: 31167177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ripple formation and smoothening on insulating surfaces.
    Headrick RL; Zhou H
    J Phys Condens Matter; 2009 Jun; 21(22):224005. PubMed ID: 21715744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic effects at ripple formation processes in anisotropic systems with multiplicative noise.
    Kharchenko DO; Kharchenko VO; Lysenko IO; Kokhan SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061108. PubMed ID: 21230645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.