BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28885583)

  • 1. Migration and Accumulation of Octachlorodipropyl Ether in Soil-Tea Systems in Young and Old Tea Gardens.
    Liao M; Shi YH; Cao HQ; Fang QK; Xiao JJ; Hua RM
    Int J Environ Res Public Health; 2017 Sep; 14(9):. PubMed ID: 28885583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipation behavior of octachlorodipropyl ether residues during tea planting and brewing process.
    Liao M; Shi Y; Cao H; Hua R; Tang F; Wu X; Tang J
    Environ Monit Assess; 2015 Oct; 188(10):551. PubMed ID: 27604890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead contamination in tea garden soils and factors affecting its bioavailability.
    Jin CW; Zheng SJ; He YF; Zhou GD; Zhou ZX
    Chemosphere; 2005 May; 59(8):1151-9. PubMed ID: 15833489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of α-, β-, γ-, and δ-hexachlorocyclohexane in soil-plant-air system in a tea garden.
    Yi Z; Zheng L; Guo P; Bi J
    Ecotoxicol Environ Saf; 2013 May; 91():156-61. PubMed ID: 23433836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake, Translocation, Metabolism, and Distribution of Glyphosate in Nontarget Tea Plant (Camellia sinensis L.).
    Tong M; Gao W; Jiao W; Zhou J; Li Y; He L; Hou R
    J Agric Food Chem; 2017 Sep; 65(35):7638-7646. PubMed ID: 28795804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unlocking the elemental signature of European tea gardens: Implications for tea traceability.
    Girolametti F; Annibaldi A; Illuminati S; Damiani E; Carloni P; Ajdini B; Fanelli M; Truzzi C
    Food Chem; 2024 Sep; 453():139641. PubMed ID: 38761733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal content in tea soils and their distribution in different parts of tea plants, Camellia sinensis (L). O. Kuntze.
    Seenivasan S; Anderson TA; Muraleedharan N
    Environ Monit Assess; 2016 Jul; 188(7):428. PubMed ID: 27334344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.).
    Yi X; Qiao S; Ma L; Wang J; Ruan J
    Environ Geochem Health; 2017 Oct; 39(5):1005-1016. PubMed ID: 27591762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Humic Acid on Pb Uptake and Accumulation in Tea Plants.
    Xu Q; Duan D; Cai Q; Shi J
    J Agric Food Chem; 2018 Nov; 66(46):12327-12334. PubMed ID: 30388006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Determination of S-421 in Commercial Fish and Shellfish].
    Watanabe M; Noguchi M; Hashimoto T; Yoshida S
    Shokuhin Eiseigaku Zasshi; 2018; 59(1):51-54. PubMed ID: 29743468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship of soil pH value and soil Pb bio-availability and Pb enrichment in tea leaves.
    Ye J; Zhang Q; Liu G; Lin L; Wang H; Lin S; Wang Y; Wang Y; Zhang Q; Jia X; He H
    J Sci Food Agric; 2022 Feb; 102(3):1137-1145. PubMed ID: 34329493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of Heavy Metals in Tea Leaves and Potential Health Risk Assessment: A Case Study from Puan County, Guizhou Province, China.
    Zhang J; Yang R; Chen R; Peng Y; Wen X; Gao L
    Int J Environ Res Public Health; 2018 Jan; 15(1):. PubMed ID: 29342877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminium in tea plantations: mobility in soils and plants, and the influence of nitrogen fertilization.
    Ruan J; Ma L; Shi Y
    Environ Geochem Health; 2006 Dec; 28(6):519-28. PubMed ID: 16826449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipation behavior of propargite--an acaricide residues in soil, apple (Malus pumila) and tea (Camellia sinensis).
    Kumar V; Sood C; Jaggi S; Ravindranath SD; Bhardwaj SP; Shanker A
    Chemosphere; 2005 Feb; 58(6):837-43. PubMed ID: 15621197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminium dynamics from soil to tea plant (Camellia sinensis L.): is it enhanced by municipal solid waste compost application?
    Karak T; Sonar I; Paul RK; Frankowski M; Boruah RK; Dutta AK; Das DK
    Chemosphere; 2015 Jan; 119():917-926. PubMed ID: 25259883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scale and causes of lead contamination in Chinese tea.
    Han WY; Zhao FJ; Shi YZ; Ma LF; Ruan JY
    Environ Pollut; 2006 Jan; 139(1):125-32. PubMed ID: 15998560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation dynamics of the insecticide: clothianidin (Dantop 50 % WDG) in a tea field ecosystem.
    Chowdhury S; Mukhopadhyay S; Bhattacharyya A
    Bull Environ Contam Toxicol; 2012 Aug; 89(2):340-3. PubMed ID: 22588615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isotope tracers for lead and strontium sources in the Tieguanyin tea garden soils and tea leaves.
    Sun J; Yu R; Yan Y; Hu G; Qiu Q; Jiang S; Cui J; Wang X; Ma C
    Chemosphere; 2020 May; 246():125638. PubMed ID: 31891843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead contamination in tea leaves and non-edaphic factors affecting it.
    Jin CW; He YF; Zhang K; Zhou GD; Shi JL; Zheng SJ
    Chemosphere; 2005 Nov; 61(5):726-32. PubMed ID: 16219507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidation of Differential Accumulation of 1-Phenylethanol in Flowers and Leaves of Tea (Camellia sinensis) Plants.
    Dong F; Zhou Y; Zeng L; Peng Q; Chen Y; Zhang L; Su X; Watanabe N; Yang Z
    Molecules; 2016 Aug; 21(9):. PubMed ID: 27563859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.