These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 28885820)

  • 1. Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.
    Bari SMN; Walker FC; Cater K; Aslan B; Hatoum-Aslan A
    ACS Synth Biol; 2017 Dec; 6(12):2316-2325. PubMed ID: 28885820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas10 assisted editing of virulent staphylococcal phages.
    Nayeemul Bari SM; Hatoum-Aslan A
    Methods Enzymol; 2019; 616():385-409. PubMed ID: 30691652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and Purification of the Cas10-Csm Complex from Staphylococci.
    Chou-Zheng L; Hatoum-Aslan A
    Bio Protoc; 2017 Jun; 7(11):. PubMed ID: 28835904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of CRISPR-Cas system in clinical Staphylococcus epidermidis strains revealed its potential association with bacterial infection sites.
    Li Q; Xie X; Yin K; Tang Y; Zhou X; Chen Y; Xia J; Hu Y; Ingmer H; Li Y; Jiao X
    Microbiol Res; 2016 Dec; 193():103-110. PubMed ID: 27825477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 6. A type III-A CRISPR-Cas system employs degradosome nucleases to ensure robust immunity.
    Chou-Zheng L; Hatoum-Aslan A
    Elife; 2019 Apr; 8():. PubMed ID: 30942690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomics of staphylococcal Twort-like phages--potential therapeutics of the post-antibiotic era.
    Łobocka M; Hejnowicz MS; Dąbrowski K; Gozdek A; Kosakowski J; Witkowska M; Ulatowska MI; Weber-Dąbrowska B; Kwiatek M; Parasion S; Gawor J; Kosowska H; Głowacka A
    Adv Virus Res; 2012; 83():143-216. PubMed ID: 22748811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Staphylococcus epidermidis Phages Transduce Antimicrobial Resistance Plasmids and Mobilize Chromosomal Islands.
    Fišarová L; Botka T; Du X; Mašlaňová I; Bárdy P; Pantůček R; Benešík M; Roudnický P; Winstel V; Larsen J; Rosenstein R; Peschel A; Doškař J
    mSphere; 2021 May; 6(3):. PubMed ID: 33980677
    [No Abstract]   [Full Text] [Related]  

  • 9. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9.
    Hynes AP; Rousseau GM; Lemay ML; Horvath P; Romero DA; Fremaux C; Moineau S
    Nat Microbiol; 2017 Oct; 2(10):1374-1380. PubMed ID: 28785032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phages of staphylococci: critical catalysts in health and disease.
    Hatoum-Aslan A
    Trends Microbiol; 2021 Dec; 29(12):1117-1129. PubMed ID: 34030968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular determinants for CRISPR RNA maturation in the Cas10-Csm complex and roles for non-Cas nucleases.
    Walker FC; Chou-Zheng L; Dunkle JA; Hatoum-Aslan A
    Nucleic Acids Res; 2017 Feb; 45(4):2112-2123. PubMed ID: 28204542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity.
    Jiang W; Samai P; Marraffini LA
    Cell; 2016 Feb; 164(4):710-21. PubMed ID: 26853474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Engineering of Therapeutic Phages Using Type III CRISPR-Cas Systems.
    Hill CM; Hatoum-Aslan A
    Methods Mol Biol; 2024; 2734():279-299. PubMed ID: 38066376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9.
    Lemay ML; Tremblay DM; Moineau S
    ACS Synth Biol; 2017 Jul; 6(7):1351-1358. PubMed ID: 28324650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system.
    Hatoum-Aslan A; Maniv I; Samai P; Marraffini LA
    J Bacteriol; 2014 Jan; 196(2):310-7. PubMed ID: 24187086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genes Influencing Phage Host Range in Staphylococcus aureus on a Species-Wide Scale.
    Moller AG; Winston K; Ji S; Wang J; Hargita Davis MN; Solís-Lemus CR; Read TD
    mSphere; 2021 Jan; 6(1):. PubMed ID: 33441407
    [No Abstract]   [Full Text] [Related]  

  • 18. Targeted Genome Editing of Virulent Pseudomonas Phages Using CRISPR-Cas3.
    Schroven K; Voet M; Lavigne R; Hendrix H
    Methods Mol Biol; 2024; 2793():113-128. PubMed ID: 38526727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and functional study of type III-A CRISPR-Cas systems in clinical isolates of Staphylococcus aureus.
    Cao L; Gao CH; Zhu J; Zhao L; Wu Q; Li M; Sun B
    Int J Med Microbiol; 2016 Dec; 306(8):686-696. PubMed ID: 27600408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical roles for 'housekeeping' nucleases in type III CRISPR-Cas immunity.
    Chou-Zheng L; Hatoum-Aslan A
    Elife; 2022 Dec; 11():. PubMed ID: 36479971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.